Marketing Strategies 0: Recent Trends and Technologiesin Marketing
, 137, 10–18. 36. Roy, M.S. Value co-creation with Internet of things technology in the retail industry. J. Mark. Manag. 2016
Download 1.73 Mb. Pdf ko'rish
|
sustainability-14-16356 (1)
2018
, 137, 10–18. 36. Roy, M.S. Value co-creation with Internet of things technology in the retail industry. J. Mark. Manag. 2016, 33, 7–31. 37. Tsai, Y.T.; Wang, S.C.; Yan, K.Q.; Chang, C.M. Precise Positioning of Marketing and Behavior Intentions of Location-Based Mobile Commerce in the Internet of Things. Symmetry 2017, 9, 139. [ CrossRef ] 38. Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [ CrossRef ] 39. Taylor, M.; Reilly, D.; Wren, C. Internet of things support for marketing activities. J. Strateg. Mark. 2018, 28, 149–160. [ CrossRef ] 40. Tariq, B.; Taimoor, S.; Najam, H.; Law, R.; Hassan, W.; Han, H. Generating Marketing Outcomes through Internet of Things (IoT) Technologies. Sustainability 2020, 12, 9670. [ CrossRef ] 41. Joghee, S. Internet of Things-assisted E-marketing and distribution framework. Soft Comput. 2021, 25, 12291–12303. [ CrossRef ] 42. Shin, J.; Jo, M.; Lee, J.; Lee, D. Strategic Management of Cloud Computing Services: Focusing on Consumer Adoption Behavior. IEEE 2014, 61, 419–427. [ CrossRef ] 43. Lee, K.Y. Marketing insights for mobile advertising and consumer segmentation in the cloud era: A Q–R hybrid methodology and practices. Technol. Forecast. Soc. Chang. 2015, 91, 78–92. 44. Galletta, A.; Carnevale, L.; Celesti, A.; Fazio, M.; Villari, M. A Cloud-Based System for Improving Retention Marketing Loyalty Programs in Industry 4.0: A Study on Big Data Storage Implications. IEEE 2017, 6, 5485–5492. [ CrossRef ] 45. Souri, A.; Asghari, P.; Rezaei, R. Software as a Service based CRM Providers in the Cloud Computing: Challenges and Technical Issues. J. Serv. Sci. Res. 2017, 9, 219–237. [ CrossRef ] 46. Jia, D.; Wu, Z. Development Model of Enterprise Green Marketing Based on Cloud Computing. Wirel. Commun. Mob. Comput. 2022 , 2022, 4931374. [ CrossRef ] 47. Hosseini, S.; Fallon, G.; Weerakkody, V.; Sivarajah, U. Cloud computing utilization and mitigation of informational and marketing barriers of the SMEs from the emerging markets: Evidence from Iran and Turkey. Int. J. Inf. Manag. 2019, 46, 54–69. [ CrossRef ] 48. Fan, S.; Lau, R.Y.; Zhao, J.L. Demystifying big data analytics for business intelligence through the lens of marketing mix. Big Data Res. 2015, 2, 28–32. [ CrossRef ] 49. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [ CrossRef ] 50. Fotaki, G.; Spruit, M.; Brinkkemper, S.; Meijer, D. Exploring Big Data Opportunities for Online Customer Segmentation. Int. J. Bus. Intell. Res. 2014, 5, 58–75. [ CrossRef ] 51. Ducange, P.; Pecori, R.; Mezzina, P. A glimpse on big data analytics in the framework of marketing strategies. Soft Comput. 2018, 22, 325–342. [ CrossRef ] 52. Orenga-Roglá, S.; Chalmeta, R. Social Customer Relationship Management: Taking Advantage of Web 2.0 and Big Data Technologies; SpringerPlus5: Berlin/Heidelberg, Germany, 2016. Sustainability 2022, 14, 16356 16 of 17 53. Chong, A.Y.; Ch’ng, E.; Liu, M.J.; Li, B. Predicting consumer product demands via Big Data: The roles of online promotional marketing and online reviews. Int. J. Prod. Res. 2015, 55, 5142–5156. [ CrossRef ] 54. Saidali, J.; Rahich, H.; Tabaa, Y.; Medouri, A. The combination between big data and marketing strategies to gain valuable business insights for better production success. Procedia Manuf. 2019, 32, 1017–1023. [ CrossRef ] 55. Tan, K.H.; Ji, G.; Lim, C.P.; Tseng, M.L. Using big data to make better decisions in the digital economy. Int. J. Prod. Res. 2017, 55, 4998–5000. [ CrossRef ] 56. Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [ CrossRef ] 57. Jabbar, A.; Akhtar, P.; Dani, S. Real-time big data processing for instantaneous marketing decisions: A problematization approach. Ind. Mark. Manag. 2020, 90, 558–569. [ CrossRef ] 58. Gnizy, I. Applying big data to guide firms’ future industrial marketing strategies. Appl. Big Data Guide Firms Future Ind. Mark. Strateg. 2020, 35, 1221–1235. [ CrossRef ] 59. Miller, T. Explanation in Artificial Intelligence: Insights from the Social Sciences. Artif. Intell. 2019, 267, 1–38. [ CrossRef ] 60. Choe, J.Y.; Kim, J.J.; Hwang, J. Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. J. Travel Tour. Mark. 2021, 38, 16–30. [ CrossRef ] 61. Aline, F.S.; Borges, F.J. The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. Int. J. Inf. Manag. 2020, 57, 102225. 62. Paschen, J.; Kietzmann, J.; Kietzmann, T.C. Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. J. Bus. Ind. Mark. 2019, 34, 1410–1419. [ CrossRef ] 63. Saura, J.R.; Ribeiro-Soriano, D.; Palacios-Marqués, D. Setting B2B digital marketing in artificial intelligence-based CRMs: A review and directions for future research. Ind. Mark. Manag. 2021, 98, 161–178. [ CrossRef ] 64. Sestino, A.; De Mauro, A. Leveraging Artificial Intelligence in Business: Implications, Applications and Methods. Technol. Anal. Strateg. Manag. 2021, 34, 16–29. [ CrossRef ] 65. Huang, M.H.; Rust, R.T. A Framework for Collaborative Artificial Intelligence in Marketing. J. Retail. 2021, 98, 209–223. [ CrossRef ] 66. Verma, S.; Sharma, R.; Deb, S.; Maitra, D. Artificial intelligence in marketing: Systematic review and future research direction. Int. J. Inf. Manag. Data Insights 2021, 1, 100002. [ CrossRef ] 67. Ullal, M.S.; Hawaldar, I.T.; Soni, R.; Nadeem, M. The role of machine learning in digital marketing. Sage Open 2021, 11, 21582440211050394. [ CrossRef ] 68. Stone, M.; Aravopoulou, E.; Ekinci, Y.; Evans, G.; Hobbs, M.; Labib, A.; Laughlin, P.; Machtynger, J.; Machtynger, L. Artificial intelligence (AI) in strategic marketing decision- making: A research agenda. Strateg. Mark. 2020, 33, 183–200. [ CrossRef ] 69. Kitsios, F.; Kamariotou, M. Artificial Intelligence and Business Strategy towards Digital Transformation: A Research Agenda. Sustainability 2021, 13, 2025. [ CrossRef ] 70. De Bruyn, A.; Viswanathan, V.; Beh, Y.S.; Brock, J.K.-U.; Von Wangenheim, F. Artificial Intelligence and Marketing: Pitfalls and Opportunities. J. Interact. Mark. 2020, 51, 91–105. [ CrossRef ] 71. Hair, J.F., Jr.; Sarstedt, M. Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. J. Mark. Theory Pract. 2021, 29, 65–77. [ CrossRef ] 72. Jain, D.; Dash, M.K.; Kumar, A.; Luthra, S. How is Blockchain used in marketing: A review and research agenda. Int. J. Inf. Manag. Data Insights 2021, 1, 100044. [ CrossRef ] 73. Tan, T.M.; Saraniemi, S. Trust in blockchain-enabled exchanges: Future directions in blockchain marketing. J. Acad. Mark. Sci. 2022. [ CrossRef ] 74. Lemos, C.; Ramos, R.F.; Moro, S.; Oliveira, P.M. Stick or Twist–The Rise of Blockchain Applications in Marketing Management. Sustainability 2022, 14, 4172. [ CrossRef ] 75. Zheng, Y.; Boh, W.F. Value drivers of blockchain technology: A case study of blockchain-enabled online community. Telemat. Inform. 2021, 58, 101563. [ CrossRef ] 76. Rabby, F.; Chimhundu, R.; Hassan, R. Blockchain Technology Transforms Digital Marketing by Growing Consumer Trust. Transform. Through Blockchain Technol. 2022, 265–289. [ CrossRef ] 77. Dorin, C.; Coita, M.M. Effects of the Blockchain Technology on Human Resources and Marketing: An Exploratory Study. Strateg. Innov. Mark. Tour. 2019, 683–691. [ CrossRef ] 78. Treiblmaier, H. Beyond blockchain: How tokens trigger the internet of value and what marketing researchers need to know about them. J. Mark. Commun. 2021. [ CrossRef ] 79. Nigam, A.; Behl, A.; Pereira, V.; Sangal, S. Impulse purchases during emergency situations: Exploring permission marketing and the role of blockchain. Ind. Manag. Data Syst. 2022. [ CrossRef ] 80. Chao, S. Construction Model of E-Commerce Agricultural Product Online Marketing System Based on Blockchain and Improved Genetic Algorithm. Secur. Commun. Netw. 2022, 2022, 4055698. [ CrossRef ] 81. Gleim, M.R.; Stevens, J.L. Blockchain: A game changer for marketers. Mark. Lett. 2021, 32, 123–128. [ CrossRef ] 82. Boukis, A. Exploring the implications of blockchain technology for brand–consumer relationships: A future research agenda. J. Prod. Brand Manag. 2020, 29, 307–320. [ CrossRef ] 83. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [ CrossRef ] Sustainability 2022, 14, 16356 17 of 17 84. Sjarov, M.; Lechler, T.; Fuchs, J.; Brossog, M.; Selmaier, A.; Faltus, F.; Donhauser, T.; Franke, J. The Digital Twin Concept in Industry—A Review and Systematization. IEEE. 2020, 1, 1789–1796. 85. Wu, J.; Yang, Y.; Cheng, X.U.; Zuo, H.; Cheng, Z. The Development of Digital Twin Technology Review. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [ CrossRef ] 86. Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021 , 58, 346–361. [ CrossRef ] 87. West, S.; Stoll, O.; Meierhofer, J.; Züst, S. Digital Twin Providing New Opportunities for Value Co-Creation through Supporting Decision-Making. Appl. Sci. 2021, 11, 3750. [ CrossRef ] 88. Vijayakumar, S.D. Chapter Eleven–Digital twin in consumer choice modeling. Adv. Comput. 2020, 117, 265–284. 89. Choi, Y.; Oh, M.; Choi, M.; Kim, S. Exploring the influence of culture on tourist experiences with robots in service delivery environment. Curr. Issues Tour. 2020, 24, 717–733. [ CrossRef ] 90. Hall, O.; Wahab, I. The use of drones in the spatial social sciences. Drones 2021, 5, 112. [ CrossRef ] 91. Youngjoon, C.; Choi, M.; Oh, M.; Kim, S. Service robots in hotels: Understanding the service quality perceptions of human-robot interaction. J. Hosp. Mark. Manag. 2020, 29, 613–635. 92. de Kervenoael, R.; Hasan, R.; Schwob, A.; Goh, E. Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tour. Manag. 2020 , 78, 104042. [ CrossRef ] 93. Michelle, M.E.; van Pinxteren, R.W. Trust in humanoid robots: Implications for services marketing. J. Serv. Mark. 2019, 33, 507–518. [ CrossRef ] 94. Lu, V.N.; Wirtz, J.; Kunz, W.H.; Paluch, S.; Gruber, T.; Martins, A.; Patterson, P.G. Service robots, customers and service employees: What can we learn from the academic literature and where are the gaps? J. Serv. Theory Pract. 2020, 30, 361–391. [ CrossRef ] 95. Jang, H.W.; Lee, S.B. Serving Robots: Management and Applications for Restaurant Business Sustainability. Sustainability 2020 , 12, 3998. [ CrossRef ] 96. Hwang, J.; Lee, K.W.; Kim, D.; Kim, I. Robotic Restaurant Marketing Strategies in the Era of the Fourth Industrial Revolution: Focusing on Perceived Innovativeness. Sustainability 2020, 12, 9165. [ CrossRef ] 97. Zahy, B.; Ramadan, M.F. An adapted TPB approach to consumers’ acceptance of service-delivery drones. Technol. Anal. Strateg. Manag. 2017, 29, 817–828. 98. Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [ CrossRef ] 99. Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [ CrossRef ] 100. Hwang, R.; Lee, M. The Influence of Music Content Marketing on User Satisfaction and Intention to Use in the Metaverse: A Focus on the SPICE Model. Businesses 2022, 2, 141–155. [ CrossRef ] 101. Bourlakis, M.; Papagiannidis, S.; Li, F. Retail spatial evolution: Paving the way from traditional to metaverse retailing. Electron. Commer. Res. 2009, 9, 135–148. [ CrossRef ] 102. Shen, B.; Tan, W.; Guo, J.; Zhao, L.; Qin, P. How to Promote User Purchase in Metaverse? A Systematic Literature Review on Consumer Behavior Research and Virtual Commerce Application Design. Appl. Sci. 2021, 11, 11087. [ CrossRef ] 103. Hollensen, S.; Kotler, P.; Opresnik, M.O. Metaverse—The new marketing universe. J. Bus. Strategy 2022. [ CrossRef ] 104. Kaplan, A.M.; Haenlein, M. The fairyland of Second Life: Virtual social worlds and how to use them. Bus. Horiz. 2009, 52, 563–572. [ CrossRef ] 105. Smaili, N.; de Rancourt-Raymond, A. Metaverse: Welcome to the new fraud marketplace. J. Financ. Crime 2022. [ CrossRef ] 106. Ranjan, J.; Foropon, C. Big data analytics in building the competitive intelligence of organizations. Int. J. Inf. Manag. 2021, 56, 102231. [ CrossRef ] Document Outline
Download 1.73 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling