3. Agar f(x) ning darajasi toq son boʻlsa, misol uchun f(x) = x, x³, x⁵ kabi, unda integralni integratsiya boʻyicha yordamda hisoblash mumkin. Misol uchun: ∫₀^∞ x/(x²+a²) dx = (1/2) ∫₀^∞ (1/(1+(a/x)²)) d(x²) = (1/2) ln(1+(a/x)²)₀^∞ = ½ ln(1+∞) = ∞ Shu sabablarga koʻra, quyidagi integralni hisoblash mumkin: ∫₀^∞ sin(x)/(x²+a²) dx = (π/2) e⁻ᵃ Laplas integrali, bir funksiyaning Laplas transformasini topishda yordam beradi. Laplas transformasi, funksiyani boshqa bir koordinat sistemiga oʻtkazadi, bu yerda koordinat sistemasi Laplas oʻzgaruvchilari (p) va funksiya qiymatlari (F(p))dan iborat boʻladi. Laplas integrali, funksiyani Laplas transformasiga aylantirishda yordam beradi. Laplas integrali quyidagi formula bilan beriladi: - L{f(t)} = F(p) = ∫₀^∞ e⁻ᵃᵗ f(t) dt
Formula yordamida, biz bir nechta funksiyalarni Laplas transformasini hisoblaymiz. Laplas integrali yordamida funksiyani transformaga oʻtkazish, funksiyani boshqa koordinat sistemiga oʻtkazishga oʻxshashdir. Laplas transformasi, bir necha matematik amallarida yordam beradi, masalan, differensial tenglamalarini yechishda yoki funksiyalarning integrallarini hisoblashda yordam beradi. Laplas integrali yordamida funksiyalarni hisoblash uchun quyidagi qadamlar amalga oshiriladi: 1. Funksiyani Laplas integrali formula bilan ifodalang. 2. Laplas integralini hisoblang. 3. Laplas transformasini hisoblang. 4. Inver Laplas transformasini yordamida asl funksiyani toping. - Laplas integrali va uni hisoblash, matematikning turli sohalarda yordam beradigan muhim amallardan biridir. Laplas integrali yordamida funksiyalarni transformaga oʻtkazish, ularni boshqa koordinat sistemiga oʻtkazishga oʻxshashdir. Bu esa, turli xil matematik amallarida yordam beradi. Laplas integrali va uni hisoblash haqida malumot bilish, matematikda yuqori darajali amallarni bajarishga yordam beradi.
f(t) = 4t ning Laplas konvertatsiyasini toping. Laplas integralidan foydalanib, bizda: L{4t} = F(s) = ∫0dan cheksizgacha e^(-st) (4t) dt Qismlar bo'yicha integratsiyalash natijasida biz quyidagilarga erishamiz: F(s) = -4t e^(-st) 0dan cheksizgacha + ∫0dan cheksizgacha 4 e^(-st) dt Birinchi atama nolga baholanadi, chunki e^(-st) t cheksizlikka yaqinlashganda nolga yaqinlashadi. Ikkinchi shartni quyidagicha baholash mumkin: F(s) = -4t e^(-st) 0 cheksizgacha + 4/s -e^(-st) 0dan cheksizgacha F(lar) = 0 + 4/s = 4/s Shuning uchun f(t) = 4t ning Laplas konvertatsiyasi F(s) = 4/s.
Do'stlaringiz bilan baham: |