Mavzu: Ajoyib limitlar reja
Cheksiz kichik ketma-ketliklar va ularning xossalari
Download 470 Kb.
|
Sonlar ketma ketligi va uning limiti. Funksiya limiti
- Bu sahifa navigatsiya:
- Cheksiz katta miqdorlar
- Teorema
Cheksiz kichik ketma-ketliklar va ularning xossalari.
Ta’rif. Agar n=0 bo’lsa, u holda ( n ) ketma-ketlik cheksiz kichik miqdor yoki cheksiz kichik ketma-ketlik deyiladi. Agar xn =a bo’lsa, u holda n=xn-a cheksiz kichik miqdor bo’ladi. Haqiqatan, ketma-ketlik limiti ta’rifiga binoan har bir >0 uchun n0 natural son topilib, n>n0 lar uchun | n|=|xn-a|< tengsizlik o’rinli. Aksincha, agar n=xn-a cheksiz kichik miqdor bo’lsa, u holda xn=a bo’ladi. Demak, a son (xn) ketma-ketlikning limiti bo’lishi uchun uni x=a+ n ko’rinishda ifodalanishi zarur va yetarlidir, bu yerda n cheksiz kichik miqdor. 1-lemma. Chekli sondagi cheksiz kichik miqdorlarning yig’indisi (ko’paytmasi) cheksiz kichik miqdor bo’ladi. Isbot. n va n lar cheksiz kichik bo’lsa, u holda n= n + n ni cheksiz kichik bo’lishini ko’rsatamiz. n =0 dan har bir >0 uchun n1 nomer topilib, n>n1 lar uchun | n|< tengsizlik o’rinli bo’ladi. Xuddi shu kabi n2 nomer topilib, n>n2 lar uchun | n |< tengsizlik o’rinli bo’ladi. n0=max(n1,n2) deb olsak, n>n0 lar uchun | n|< va | n |< tengsizliklarning har biri o’rinli bo’ladi. Bundan | n |<| n+ n | | n |+| n | < = tengsizlik kelib chiqadi. Demak, n -cheksiz kichik miqdor. n va n lar ko’paytmasi cheksiz kichik miqdor bo’lishi huddi shunday isbotlanadi. 2-lemma. Chegaralangan miqdor bilan cheksiz kichik miqdorning ko’paytmasi cheksiz kichik miqdor bo’ladi.(isbotlang) Misol. xn = sin n2 chegaralangan miqdor, n = cheksiz kichik miqdor, lemmaga asosan cheksiz kichik miqdor bo’ladi, ya’ni =0. Cheksiz katta miqdorlar. Ta’rif. Har bir M son uchun shunday n nomer mavjud bo’lib, barcha n>n0 lar uchun |xn|>M tengsizlik o’rinli bo’lsa, (xn) ketma-ketlik cheksiz katta miqdor yoki ketma-ketlik deyiladi. Bu holda xn= belgilash ishlatiladi. Demak, xn= Biror nomerdan boshlab xn>0 (xn<0) bo’lsa, xn= tenglik xn=+ ( xn=- ) ko’rinishda yoziladi. Misol. 1. xn=n2, n2=+ ; 2. zn=-2n, (-2n)=- . Teorema. Agar xn cheksiz katta miqdor bo’lsa, u holda n= cheksiz kichik miqdor bo’ladi. Isbot: >0 son olib M= desak shunday n0 nomer topilib, barcha n>n0 lar uchun |xn|> bo’ladi. Bundan = < tengsizlikni hosil qilamiz. Bundan n cheksiz kichik miqdor ekanligi kelib chiqadi. Teorema. Agar n cheksiz kichik miqdor bo’lsa, xn= cheksiz katta miqdor bo’ladi. (Isbotlang). Adabiyotlar:Азларов. Т., Мансуров. Х. “Математик анализ” 1т: 1994,2т. 1995. Xикматов А.X., Турдиев Т., “Математик анализ” Тошкент: 1т, 1990 . Введение в Maple. Математический пакет для всех. В.Н.Говорухин, В.Г.Цибулин, Мир, 1997 Пакет символьных вычислений Maple V. Г.В. Прохоров и др. "Петит", 1997 Математическая система Maple V. В.П.Дьяконов, "Солон", 1998 Maple V Power Edition. Б.М. Манзон, "Филин", 1998. Агарева О.Ю., Введенская Е. В., Осипенко К. Ю. Предел функции. Непрерывностъ ( методические указания к практическим занятиям по теме : Maple Ò в курсе математического анализа). Москва 1999. www.ziyonet.uz Download 470 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling