Algoritmlarni vaqt va hajmiy murakkablik bo’yicha baholashda tekis va logarifmik solishtirma mezonlar
Algoritmlarni tahlil qilishning asosiy vazifasi kirish ma'lumotlari hajmining oshib borishi bilan resurslarga bo'lgan talabni (vaqt va xotira xarajatlari) o'lchash usullarini aniqlashdir. Shundan so'ng, o'sish sur'ati qonuniyatlarini tavsiflash uchun zarur bo'lgan matematik mexanizm ishlab chiqiladi. Kirish ma'lumotlari hajmini oshirish bilan turli xil funktsiyalar; "bitta funktsiya boshqasiga qaraganda tezroq o'sadi" iborasi nimani anglatishini aniqlab olishga yordam beradi. Ba'zi hollarda, yaxshi bajarilish vaqtiga erishish yanada murakkab ma'lumotlar tuzilmalaridan foydalanishga bog'liq va bo'lim oxirida biz bunday ma'lumotlar strukturasining juda foydali misolini ko'rib chiqamiz: ustuvor navbatlar va ularni uyum(kucha, heap) asosida amalga oshirish.
Asosiy maqsad - hisoblash muammolarining samarali algoritmlarini izlash. Ushbu umumiylik darajasida kompyuterni hisoblashning butun sohasi ushbu mavzu bilan bog'liq bo'lib tuyuladi; bizning yondashuvimiz boshqalardan qanday farq qiladi? Algoritmlarni ishlab chiqishda umumiy mavzular va loyihalash tamoyillarini aniqlashga harakat qilamiz. Bizni samarali algoritmlarni loyihalashning asosiy usullarini minimal ma'lumot bilan namoyish etuvchi paradigmatik masalalar va usullar qiziqtiradi.
Algoritmni bajarilish qadami - bu ijrochi tomonidan bitta ko‘rsatmaning bajarilishidir. Bir masalani hal etuvchi ikkita algoritmdan kam qadam talab qilinayotgani samaraliroqdir. Samaradorlik o‘lchovi - bu bor-yo‘g‘i qadamlar sonidir. Lekin chuqurroq e’tibor berib qarasak, bu ta’rifdagi mujmal tomonlarni aniqlaymiz. Ba’zan avval uchragan algoritmlardagidan ko‘ra vaziyat murakkabroq bo’ladi.
Algoritmlar murakkabligi bilan ham farqlanishi mumkin. Algoritmning murakkabligini uning matnidagi satrlar soni bilan o‘lchaymiz. Shu bilan birga quyidagi ikki satrni bir tuzilmaning ikki qismi bo‘lgani uchun bittaga hisoblaymiz
4.Taqribiy integrallash usuli va aniqligi bo’yicha hisoblash
Oliy matematika kursidan malumki aniq integrallar asosan N‘yuton-Leybnits formulasi bilan hisoblanadi. Yani quyidagi formula bilan hisoblanadi:
Bu yerda F(x) funktsiya f(x) funktsiyaning boshlangich funktsiyasi. а-integralning quyi b-esa yuqori chegarsi. Nyuton–Leybnits formulasi bizga ma‘lumki elementar funktsiyalar uchun foydalanish qulayrok.
Lekin har qanday f(x) funktsiyaning boshlangich funktsiyasi elementar funktsiya bulavermaydi, yani integrallash murakkab bo’ladi. Bunday aniq integrallarni N‘yuton-Leybnits formulasi bilan hisoblab bulmaydi. Bunday hollarda integrallarni taqribiy hisoblash usularidan foydalanib integrallarning taqribiy kiymatlari topiladi.
Do'stlaringiz bilan baham: |