Mavzu: Binar daraxtlarni tashkil qilish. Binar daraxtlar ustida amallar
Download 26.37 Kb.
|
1 2
Bog'liqMavzu Binar daraxtlarni tashkil qilish. Binar daraxtlar ustida -fayllar.org
Mavzu: Binar daraxtlarni tashkil qilish. Binar daraxtlar ustida amallar 620-21-GURUH TALABASI ALIYEV MUHAMMADALI AMALIY MASHG’ULOT- 11 Mavzu: Binar daraxtlarni tashkil qilish. Binar daraxtlar ustida amallar. Binar daraxtlar. Daraxt balandligi va ko’ruv . Ishdan maqsad. Ushbu laboratoriya ishida talabalar Binar daraxtlar tushunchasi bilan tanishib chiqishi hamda daraxt balandligi va binar daraxtlar ustida amallar bajarish Qo’yilgan masala. Talabalar topshiriq variantiga mos ravishda binar darxtlar ustida berilgan amallar bilan ishlash ko’nikmasiga ega bo’lishlari kerak. Ish tartibi: Tajriba ishi nazariy ma’lumotlarini o‘rganish; Berilgan topshiriqning algoritmini ishlab chiqish; C++ dasturlash muhitida dasturni yaratish; Natijalarni tekshirish; Hisobotni tayyorlash va topshirish. Daraxtlar: qatorlar, bog'langanro'yxatlar, Stekvanavbatlardanfarqlio'laroq, buchiziqlima'lumotlartuzilmalari, daraxtlarma'lumotlarningierarxiktuzilmalari. Daraxtso'zbirikmasi: engyuqoritugundaraxtningildizidebataladi. To'g'ridan-to'g'ri element ostida bo'lgan elementlar uning bolalari deb ataladi. To'g'ridan-to'g'ri biron bir narsaning yuqorisidagi element uning ota- onasi deb ataladi. Masalan, "a" - "f" ning farzandi, "f" - "a" ning ota-onasi. Va nihoyat, bolalari bo'lmagan elementlar barglar deb nomlanadi. Nima uchun daraxtlar? 1. Daraxtlardan foydalanishning bir sababi tabiiy ravishda ierarxiyani shakllantiradigan ma'lumotlarni saqlamoqchi bo'lganligingiz bo'lishi mumkin. Masalan, kompyuterdagi fayl tizimi: 2. Daraxtlar (ba'zi buyurtma bilan, masalan, BST) o'rtacha kirish / qidirishni ta'minlaydi (bog'langan ro'yxatdan tezroq va massivlardan sekinroq). 3. Daraxtlar o'rtacha kiritishni / o'chirishni ta'minlaydi (Arraylardan tezroq va tartibsiz bog'langan ro'yxatlarga qaraganda sekinroq). 4. bog'langan ro'yxatlar singari va massivlardan farqli o'laroq, daraxtlar tugunlar sonining yuqori chegarasiga ega emas, chunki tugunlar ko'rsatgichlar yordamida bog'langan. Amaliy mashg’ulot topshirig’i: Xulosa
hisoblanadi. Binar daraxti ifodalashi mumkin boʻlgan ikkita keng tarqalgan ikkilik ifoda turi algebraik va mantiqiy ifoda turlari hisoblanadi. Binar daraxti birlik va ikkilik operatorlarni oʻz ichiga olgan ifodalarni ifodalashi mumkin. Binar ifoda daraxtining har bir tugunida nol, bitta yoki ikkita son mavjud. Ushbu cheklangan struktura ifoda daraxtlarini qayta ishlashni soddalashtiradi. Ikkilik ifoda daraxtining barglari operandlar, masalan, doimiylar yoki oʻzgaruvchilar nomlari va boshqa tugunlarda operatorlar mavjud. Bu alohida daraxtlar ikkilik boʻladi, chunki barcha operatsiyalar ikkilikdir va bu eng oddiy holat boʻlsa-da, tugunlarda ikkitadan ortiq son boʻlishi mumkin. Bundan tashqari, birlik minus operatorida boʻlgani kabi, tugunning har biri faqat bitta songa ega boʻlishi mumkin. Ifodalar daraxti T ni chap va oʻng pastki daraxtlarni rekursiv baholash natijasida olingan qiymatlarga ildizdagi operatorni qoʻllash orqali baholash mumkin. Algebraik ifoda ikkilik ifoda daraxtidan qavs ichiga olingan chap ifodani rekursiv ishlab chiqarish, soʻngra operatorni ildizga chiqarish va nihoyat, qavs ichiga olingan oʻng ifodani rekursiv ishlab chiqarish orqali ishlab chiqarilishi mumkin. Ushbu umumiy strategiya (chap, tugun, oʻng) Download 26.37 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling