Mavzu: Parallel xisoblash tizimlari
Download 1.69 Mb.
|
1-Amaliy mashg’ulot (1)
# components of the distance vector
p = nodes[start:stop] q = nodes.T Rx = p[:, 0:1] - q[0:1] Ry = p[:, 1:2] - q[1:2] Rz = p[:, 2:3] - q[2:3] # calculate function of the distance L = np.sqrt(Rx * Rx + Ry * Ry + Rz * Rz) D[start:stop, :] = L * L * L / 12 + L * L / 6 queue.task_done() """ Python multiprocessing with shared memory example. This example demonstrate workaround for the GIL problem. Workaround uses processes instead of threads and RawArray allocated from shared memory. See also: [1] http://docs.python.org/2/library/multiprocessing.html [2] http://folk.uio.no/sturlamo/python/multiprocessing-tutorial.pdf [3] http://www.bryceboe.com/2011/01/28/the-python-multiprocessing-queue-and-large-objects/ """
import time
def generateNodes(N): """ Generate random 3D nodes """ return np.random.rand(N, 3) def spCalcDistance(nodes): """ Single process calculation of the distance function. """ p = nodes q = nodes.T # components of the distance vector Rx = p[:, 0:1] - q[0:1] Ry = p[:, 1:2] - q[1:2] Rz = p[:, 2:3] - q[2:3] # calculate function of the distance L = np.sqrt(Rx * Rx + Ry * Ry + Rz * Rz) D = L * L * L / 12 + L * L / 6 return D def mpCalcDistance_Worker(nodes, queue, arrD): """ Worker process for the multiprocessing calculations """ nP = nodes.shape[0] nQ = nodes.shape[0] D = np.reshape(np.frombuffer(arrD), (nP, nQ)) while True: job = queue.get() if job == None: break start = job[0] stop = job[0] + job[1] # components of the distance vector p = nodes[start:stop] q = nodes.T Rx = p[:, 0:1] - q[0:1] Ry = p[:, 1:2] - q[1:2] Rz = p[:, 2:3] - q[2:3] # calculate function of the distance L = np.sqrt(Rx * Rx + Ry * Ry + Rz * Rz) D[start:stop, :] = L * L * L / 12 + L * L / 6 queue.task_done() queue.task_done() def mpCalcDistance(nodes): """ Multiple processes calculation of the distance function. """ # allocate shared array nP = nodes.shape[0] nQ = nodes.shape[0] arrD = mp.RawArray(ctypes.c_double, nP * nQ) # setup jobs #nCPU = mp.cpu_count() nCPU = 2 nJobs = nCPU * 36 q = nP / nJobs r = nP % nJobs jobs = [] firstRow = 0 for i in range(nJobs): rowsInJob = q if (r > 0): rowsInJob += 1 r -= 1 jobs.append((firstRow, rowsInJob)) firstRow += rowsInJob queue = mp.JoinableQueue() for job in jobs: queue.put(job) for i in range(nCPU): queue.put(None) # run workers workers = [] for i in range(nCPU): worker = mp.Process(target = mpCalcDistance_Worker, args = (nodes, queue, arrD)) workers.append(worker) worker.start() queue.join() # make array from shared memory D = np.reshape(np.frombuffer(arrD), (nP, nQ)) return D def compareTimes(): """ Compare execution time single processing versus multiple processing. """ nodes = generateNodes(3000) t0 = time.time() spD = spCalcDistance(nodes) t1 = time.time() print "single process time: {:.3f} s.".format(t1 - t0) t0 = time.time() mpD = mpCalcDistance(nodes) t1 = time.time() print "multiple processes time: {:.3f} s.".format(t1 - t0) err = np.linalg.norm(mpD - spD) print "calculate error: {:.2e}".format(err) def showTimePlot(): """ Generate execution time plot single processing versus multiple processing. """ N = range(100, 4000, 4) spTimes = [] mpTimes = [] rates = [] for i in N: print i nodes = generateNodes(i) t0 = time.time() spD = spCalcDistance(nodes) t1 = time.time() sp_tt = t1 - t0 spTimes.append(sp_tt) t0 = time.time() mpD = mpCalcDistance(nodes) t1 = time.time() mp_tt = t1 - t0 mpTimes.append(mp_tt) rates.append(sp_tt / mp_tt) plt.figure() plt.plot(N, spTimes) plt.plot(N, mpTimes) plt.xlabel("N") plt.ylabel("Execution time") plt.figure() plt.plot(N, rates) plt.xlabel("N") plt.ylabel("Rate") plt.show() def main(): compareTimes() #showTimePlot() if __name__ == '__main__': main() Download 1.69 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling