8-§. Rikkati differensial tenglamasi.
Ushbu
(1)
ko`rinishdagi tenglamaga Rikkati differensial tenglamasi deyiladi. Bu yerda bo’lib, .
Agar bo’lsa, u holda (1) differensial tenglama ushbu
ko’rinishni oladi. Bu esa chiziqli bir jinsli bo’lmagan differensial tenglamadir.
Agar bo’lsa, u holda (1) differensial tenglama
ko’rinishni oladi. Bu esa Bernulli differensial tenglamasidir.
Umumiy holda Rikkati differensial tenglamasi kvadraturada integrallanmaydi.
Shuni alohida qayd qilish lozimki, ayrim xususiy hollardagina Rikkati differensial tenglamasini kvadraturada integrallanishini ko’rsatish mumkin. Jumladan 1841 yilda Liuvill ushbu
ko’rinishdagi Rikkati differensial tenglamasi kvadraturada integrallanuvchi bo’lishi uchun soni butun bo’lishi kerakligini ko’rsatib berdi. Ammo Rikkati differensial tenglamasining ayrim xossalarini o’rganishimiz mumkin.
Do'stlaringiz bilan baham: |