Методическое пособие к лабораторным работам №5 9 для студентов II курса


Download 1.71 Mb.
bet22/25
Sana02.08.2023
Hajmi1.71 Mb.
#1664603
TuriМетодическое пособие
1   ...   17   18   19   20   21   22   23   24   25
Bog'liq
Lab ishi yarim o\'tkazgichlar

Рис. 20. Температурная зависимость концентрации носителей заряда в полупроводнике

Подвижность носителей заряда также имеет сложную зависимость от температуры. Подвижность носителя заряда определяется как отношение средней установившейся скорости направленного движения к напряженности электрического поля:


(16)
Удельная проводимость полупроводника имеет вид:


(17)

Подвижность носителей заряда в полупроводниках с атомарной структурой, к которым относится большинство полупроводниковых материалов, определяется механизмами рассеяния. Такими механизмами рассеяния являются рассеяние на тепловых колебаниях решетки и рассеяние на ионизированных ионах примеси. Эти два механизма рассеяния приводят к появлению двух участков на температурной зависимости подвижности (рис. 21). На рис. 21 подвижность носителей, связанная с рассеянием на тепловых колебаниях, обозначена а, а подвижность, связанная с рассеянием на ионизированных примесях, обозначена и. Можно ясно видеть, что два механизма рассеяния имеют сильно отличающиеся друг от друга зависимости от температуры.



Рис. 21. Температурная зависимость подвижности носителей заряда в полупроводнике

Рассмотрев влияние температуры на концентрацию и подвижность носителей заряда, можно представить и общий ход изменения удельной проводимости при изменении температуры. Так как в полупроводниках с атомарной решеткой подвижность с температурой меняется по более слабому (по сравнению с экспоненциальным) степенному закону, то зависимость проводимости от температуры будет подобна температурной зависимости концентрации носителей заряда (рис. 22). На зависимости удельной проводимости также выделяют три характерных участка: область ионизации примеси (примесная проводимость), область истощения примеси и высокотемпературный участок собственной электропроводности (собственная проводимость), на котором наклон определяется величиной запрещенной зоны материала.


На рис. 22 можно выделить границу перехода к собственной проводимости. Эта граница характеризуется минимумом электропроводности γmin, имеющим место при некоторой температуре. Согласно (14), зная γmin, можно оценить собственную концентрацию носителей заряда n0i: γmin= γi = en0i(n + p). Положение этой точки может изменяться довольно сильно и зависит как от концентрации легирующей примеси, так и от величины ширины запрещенной зоны полупроводника.
Помимо температурной зависимости удельной проводимости, практический интерес представляет также зависимость удельного сопротивления полупроводника от концентрации примесных атомов (рис. 23). Эта зависимость устанавливается экспериментальным путем и используется при расчетах количества легирующей примеси, необходимой для выращивания полупроводникового монокристалла с требуемым удельным сопротивлением.

Рис. 22. Температурные зависимости удельной проводимости полупроводника при разной концентрации примесей: NД1< NД2< NД3


Download 1.71 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   25




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling