Модельдеу әдістері
Динамика теңдеулерін қарапайымдау
Download 462.28 Kb.
|
362973 (2)
4.2 Динамика теңдеулерін қарапайымдау
Динамика теңдеулер жүйесі әдетте сызықты емес болғандықтан, оларды аналитикалық жолмен шешу жалпы кезде мүмкін емес. Сондықтан есеп спецификасына қарай теңдеулер және шектеулермен анықталатын кейбір байланыстарды жою үшін әртүрлі қарапайымдау әрекеттері орындалады. Сонымен бірге процестің маңызды қасиеттері сақталу керек. Ең қарапайым (математикалық шешу жағынан) статикалық есеп болады. Уақыт және координаттар бойынша туындылар нөлге тең, сондықтан дифференциалдық теңдеулер орнына алгебралық теңдеулерді аламыз (жинақталған параметрлері бар объекттердің стационарлы режимдері). Қарапайымдылық жағынан келесі стационарлық есеп болады. Теңдеулерде уақыт бойынша туындалар нөлге тең болады, сондықтан тәуелсіз координаттар саны азаяды (біздер осындай есептерді қарастырмаймыз). Стационарлы емес есептердің математикалық түрін қарапайымдау үшін өзара байланысқан жүйелер санын азайту, теңдеулер санын азайту жолымен, бөлек теңдеулердегі кейбір байланыстарды жою жолымен, кеңістік координаттар санын азайту және теңдеулерді сызықтандыру жолдарымен орындалады. Әрине, кейбір теңдеулерді жою жүйе дәрежесін төмендетеді. Математикалық көзқарас жағынан жүйе бекітілмеген болады. Жойылған теңдеулерді процестің жүріс-тұрысын жуықтап көрсететін алгебралық тәуелділіктермен алмастыру керек. Мысалы, сәйкес параметрлері тұрақты деп есептелінуі мүмкін. Көптеген практикалық жағдайларда нақты ағынның қозғалу заңдары тәжірибелік мәліметтер негізінде табылады. Тәжірибелік зерттеулерден ағынның нақты құрамын қамтып көрсететін кейбір коэффициенттері анықталады, мысалы, жылдамдық, температура, тығыздылықтың кеңістік бойынша өзгеретінін есепке алатын тәуелділіктер. Осындай коэффициенттері үйкелу, жылу беру, екі компоненттік қоспаларда фазалардың бір-бірі арқылы қозғалу жылдамдықтар, т.б. болып табылады. Олардың барлығы ағынның интегралдық сипаттамалары болады, олар анықталған жуықтаумен нақты ағындағы қозғалыс мөлшерімен, жылулықпен, затпен алмасуды қамтып көрсетеді. Аталған коэффициенттер көмегімен және ағын кесіндісі бойынша параметрлердің орта мәндерімен жылу беру, гидравликалық кедергі, фазалар таратылуы көрсетіледі. Олар арасындағы байланыстар да тәжірибеден табылады. Эмпирикалық коэффициенттерді және аталған тәуелділіктерді қолдану ағынның нақты үш өлшемдігін қарастырмауға мүмкіндік береді. Сонда кейбір теңдеулер қарапайымдалады, кейбіреулерін жоюға болады. Осындай қарапайымдауды өткізуге болады, себебі эмпирикалық тәуелділіктер ағынның нақты үш өлшемділігін қамтып көрсетеді деп есептеуге болады. Кей кезде жоғарыда айтылған қорытындылар негізінде динамикалық сипаттамаларды есептеу үшін бір өлшемді модельді қолдануға болады, ал кейбір кезде жинақталған параметрлері бар модельді. Бір өлшемді модельдерде параметрлер тек қана ағын осімен бағытталған бір координата бойынша өзгереді. Канал кесіндісі бойынша параметрлер тұрақты болып орта мәнге тең деп есептелінеді. Жинақталған параметрлері бар модельдерде жүйенің барлық параметрлері кеңістік координаталардан тәуелді емес, тек қана уақыт функциясы болады деп есептелінеді. Кеңістік координата бойынша туындылар функцияның кірудегі және шығудағы мәндерінің айырмашылығының канал ұзындығына қатынасымен алмасады. Тұрақты жүйелерде өтпелі процестер барлық біртекті параллелді қосылған элементтерінде бірдей өтеді. Сондықтан өтпелі процестерді зерттегенде толық жүйені қарастырмай, тек қана жүйенің бір элементін қарастыруға болады. Download 462.28 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling