Modelling and simulation of hollow fiber membrane vacuum regeneration for co2 desorption processes using ionic liquids
Download 1.83 Mb. Pdf ko'rish
|
1-s2.0-S1383586621011734-main
J.M. Vadillo et al.
Separation and Purification Technology 277 (2021) 119465 13 [55] M.B. Shiflett, B.A. Elliott, S.R. Lustig, S. Sabesan, M.S. Kelkar, A. Yokozeki, Phase behavior of CO 2 in room-temperature ionic liquid 1-ethyl-3-ethylimidazolium acetate, ChemPhysChem. 13 (2012) 1806–1817, https://doi.org/10.1002/ cphc.201200023 . [56] R. Santiago, J. Lemus, C. Moya, D. Moreno, N. Alonso-Morales, J. Palomar, Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO 2 capture, ACS Sustain. Chem. Eng. 6 (2018) 14178–14187, https://doi.org/10.1021/acssuschemeng.8b02797 . [57] M.I. Cabaço, M. Besnard, Y. Danten, J.A.P. Coutinho, Carbon dioxide in 1-butyl-3- methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations, J. Phys. Chem. A. 116 (2012) 1605–1620, https://doi.org/10.1021/jp211211n . [58] L. Zhou, X. Shang, J. Fan, J. Wang, Solubility and selectivity of CO 2 in ether- functionalized imidazolium ionic liquids, J. Chem. Thermodyn. 103 (2016) 292–298, https://doi.org/10.1016/j.jct.2016.08.028 . [59] J. Palomar, V.R. Ferro, J.S. Torrecilla, F. Rodríguez, Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design, Ind. Eng. Chem. Res. 46 (2007) 6041–6048, https://doi.org/10.1021/ie070445x . [60] D. Hospital-Benito, J. Lemus, R. Santiago, J. Palomar, Thermodynamic and kinetic evaluation of ionic liquids + tetraglyme mixtures on CO 2 capture, J. CO2 Util. 35 (2020) 185–193, https://doi.org/10.1016/j.jcou.2019.09.015 . [61] W.T. Zheng, F. Zhang, Y.T. Wu, X.B. Hu, Concentrated aqueous solutions of protic ionic liquids as effective CO 2 absorbents with high absorption capacities, J. Mol. Liq. 243 (2017) 169–177, https://doi.org/10.1016/j.molliq.2017.08.035 . [62] M.R.M. Abu-Zahra, L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, G. F. Versteeg, CO 2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenh. Gas Control. 1 (2007) 37–46, https://doi.org/10.1016/S1750-5836(06)00007-7 . [63] J. Yu, S. Wang, H. Yu, L. Wardhaugh, P. Feron, Rate-based modelling of CO 2 regeneration in ammonia based CO 2 capture process, Int. J. Greenh. Gas Control. 28 (2014) 203–215, https://doi.org/10.1016/j.ijggc.2014.06.032 . [64] K. Khonkaen, K. Siemanond, A. Henni, Simulation of carbon dioxide capture using ionic liquid 1-Ethyl-3-methylimidazolium Acetate, Elsevier, 2014. doi:10.1016/ B978-0-444-63455-9.50009-X. [65] M.B. Shiflett, D.W. Drew, R.A. Cantini, A. Yokozeki, Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate, Energy and Fuels. 24 (2010) 5781–5789, https://doi.org/10.1021/ef100868a . [66] P. Luis, T. Van Gerven, B. Van Der Bruggen, Recent developments in membrane- based technologies for CO 2 capture, Prog. Energy Combust. Sci. 38 (2012) 419–448, https://doi.org/10.1016/j.pecs.2012.01.004 . J.M. Vadillo et al. Download 1.83 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling