Lz
= 0,01; ÿz =
=
1 < i < Nx = 3; 1 < j < Ny = 3; 1 < k < Nz = 3; t > 1,
=
=
= a
= 0,003.
(2) tenglamani chekli farqlar usuli bilan yechish mumkin [3]. O'zgartirilgan tenglamani
quyidagicha ifodalash mumkin:
n - x dagi
tanlab olish nuqtalari soni, m - y dagi tanlab olish nuqtalari soni,
ÿt
Ti,j,k,lÿTi,j,k,lÿ1
Ti,j,k,lÿTi,j,k,lÿ1
Lx
ÿx =
ÿt
Ti,j,kÿ1,lÿ1ÿ2Ti,j,k,lÿ1+Ti,j,k+1,lÿ1
+ + ÿz 2 ÿy
Tiÿ1,j,k,lÿ1ÿ2Ti,j,k,lÿ1+Ti+1,j,k,lÿ1
+
ÿx 2
Ti,j,kÿ1,lÿ1ÿ2Ti,j,k,lÿ1+Ti,j,k+1,lÿ1
+ + ÿz 2 ÿy
Ti,jÿ1,k,lÿ2Ti,j,k,lÿ1+Ti,j+1,k,lÿ1
2
Ti,jÿ1,k,lÿ2Ti,j,k,lÿ1+Ti,j+1,k,lÿ1
Tiÿ1,j,k,lÿ1ÿ2Ti,j,k,lÿ1+Ti+1,j,k,lÿ1
+
ÿx 2
2
(2) tenglama yechilishi kerak bo'lgan chegaraviy
shartlarni yozish mumkin
8 / 13
Suv
2022, 14, 151
(5)
S5 : P x, Ly, z = 0; 0 < x < Lx; 0 < x < Lz; t > 0
0,01
n
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
3
Shunday qilib, murakkab shakldagi ob'ektni matematik modellashtirishni amalga oshirish
mumkin va endi eksperimental tadqiqotni amalga oshirish mumkin.
S1 : P(x, y, Lz) = 0; 0 < x < Lx; 0 < x < Ly; t > 0 ÿ
.
/
r - z dagi
namuna olish nuqtalari soni, keyin
(6)
Do'stlaringiz bilan baham: