Neil Alden Armstrong
Download 446 b.
|
- Bu sahifa navigatsiya:
- 1936 "A Symbolic Analysis of Relay and Switching Circuits"
By the early 1970s technology was racing to keep up with the thirst for electronic brainpower in corporations, universities, government agencies, and other such big traffickers in data. Vacuum-tube switches had given way a decade earlier to smaller, cooler, less power-hungry transistors, and now the transistors, along with other electronic components, were being packed together in ever-increasing numbers on silicon chips. In addition to their processing roles, these chips were becoming the technology of choice for memory, the staging area where data and instructions are shuttled in and out of the computer—a job long done by arrays of tiny ferrite doughnuts that registered data magnetically. Storage—the part of a computing system where programs and data are kept in readiness-had gone through punched card, magnetic tape, and magnetic drum phases; now high-speed magnetic disks ruled. High-level programming languages such as FORTRAN (for science applications), COBOL (for business), and BASIC (for beginners) allowed software to be written in English-like commands rather than the abstruse codes of the early days.Some computer makers specialized in selling prodigiously powerful machines to such customers as nuclear research facilities or aerospace manufacturers. A category called supercomputers was pioneered in the mid-1960s by Control Data Corporation, whose chief engineer, Seymour Cray, designed the CDC 6600, a 350,000-transistor machine that could execute 3 million instructions per second. The price: $6 million. At the opposite end of the scale, below big mainframe machines like those made by IBM, were minicomputers, swift enough for many scientific or engineering applications but at a cost of tens of thousands rather than hundreds of thousands of dollars. Their development was spearheaded by Kenneth Olsen, an electrical engineer who cofounded Digital Equipment Corporation and had close ties to MIT.Then, with the arrival of the humble Altair in 1975, the scale suddenly plunged to a level never imagined by industry leaders. What made such a compact, affordable machine possible was the microprocessor, which concentrated all of a computer's arithmetical and logical functions on a single chip—a feat first achieved by an engineer named Ted Hoff at Intel Corporation in 1971. After the Intel 8080 microprocessor was chosen for the Altair, two young computer buffs from Seattle, Bill Gates and Paul Allen, won the job of writing software that would allow it to be programmed in BASIC. By the end of the century the company they formed for that project, Microsoft, had annual sales greater than many national economies.
1936 "A Symbolic Analysis of Relay and Switching Circuits" Electrical engineer and mathematician Claude Shannon, in his master’s thesis, "A Symbolic Analysis of Relay and Switching Circuits," uses Boolean algebra to establish a working model for digital circuits. This paper, as well as later research by Shannon, lays the groundwork for the future telecommunications and computer industries.
|
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling