Neil Alden Armstrong
Implantable cardioverter defibrillator (ICD) approved
Download 446 b.
|
- Bu sahifa navigatsiya:
- 1987 Deep-brain electrical stimulation system
- 1987 First laser surgery on a human cornea
- 1990 Human Genome Project
- Late 1950s First artificial hip replacement procedure
1985 Implantable cardioverter defibrillator (ICD) approved The Food and Drug Administration approves Michel Mirowski’s implantable cardioverter defibrillator (ICD), an electronic device to monitor and correct abnormal heart rhythms, and specifies that patients must have survived two cardiac arrests to qualify for ICD implantation. Inspired by the death from ventricular fibrillation of his friend and mentor Harry Heller, Mirowski has conceived and developed his invention almost single-handedly. It weighs 9 ounces and is roughly the size of a deck of cards.1987 Deep-brain electrical stimulation system France’s Alim-Louis Benabid, chief of neurosurgery at the University of Grenoble, implants a deep-brain electrical stimulation system into a patient with advanced Parkinson’s disease. The experimental treatment is also used for dystonia, a debilitating disorder that causes involuntary and painful muscle contractions and spasms, and is given when oral medications fail.1987 First laser surgery on a human cornea New York City ophthalmologist Steven Trokel performs the first laser surgery on a human cornea, after perfecting his technique on a cow’s eye. Nine years later the first computerized excimer laser—Lasik—designed to correct the refractive error myopia, is approved for use in the United States. The Lasik procedure has evolved from both the Russian-developed radial keratotomy and its laser-based successor photorefractive keratectomy.
If coal was king in the 19th century, oil was the undisputed emperor of the 20th. Refined forms of petroleum, or "rock oil," became—in quite literal terms—the fuel on which the 20th century ran, the lifeblood of its automobiles, aircraft, farm equipment, and industrial machines.
Then in the first 2 decades of the 20th century horseless carriages in increasing droves came looking for fuel. Researchers had found early on that the internal combustion engine ran best on light fuels like gasoline but distillation refining just didn't produce enough of it—only about 20 percent gasoline from a given amount of crude petroleum. Even as oil prospectors extended the range of productive wells from Pennsylvania through Indiana and into the vast oil fields of Oklahoma and Texas, the inherent inefficiency of the existing refining process was almost threatening to hold back the automotive industry with gasoline shortages. The problem was solved by a pair of chemical engineers at Standard Oil of Indiana—company vice president William Burton and Robert Humphreys, head of the lab at the Whiting refinery, the world's largest at the time. Burton and Humphreys had tried and failed to extract more gasoline from crude by adding chemical catalysts, but then Burton had an idea and directed Humphreys to add pressure to the standard heating process used in distillation. Under both heat and pressure, it turned out that heavier molecules of kerosene, with up to 16 carbon atoms per molecule, "cracked" into lighter molecules such as those of gasoline, with 4 to 12 carbons per molecule, Thermal cracking, as the process came to be called, doubled the efficiency of refining, yielding 40 percent gasoline. Burton was issued a patent for the process in 1913, and soon the pumps were keeping pace with the ever-increasing automobile demand. In the next decades other chemical engineers improved the refining process even further. In the 1920s Charles Kettering and Thomas Midgley, who would later develop Freon (see Air Conditioning and Refrigeration), discovered that adding a form of lead to gasoline made it burn smoothly, preventing the unwanted detonations that caused engine knocking. Tetraethyl lead was a standard ingredient of almost all gasolines until the 1970s, when environmental concerns led to the development of efficiently burning gasolines that didn't require lead. Another major breakthrough was catalytic cracking, the challenge that had escaped Burton and Humphreys. In the 1930s a Frenchman named Eugene Houdry perfected a process using certain silica and alumina-based catalysts that produced even more gasoline through cracking and didn't require high pressure. In addition, catalytic cracking produced forms of gasoline that burned more efficiently.
|
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling