Neyron tarmoq asosida obyektlarni tanib olish


Tajriba orttirish uchun misol va topshiriqlar


Download 196.63 Kb.
bet8/9
Sana18.06.2023
Hajmi196.63 Kb.
#1587404
1   2   3   4   5   6   7   8   9
Bog'liq
15-SNTni sinflash masalasiga qo\'l.

Tajriba orttirish uchun misol va topshiriqlar.
1- topshiriq. Nazariy qismni o`zlashtirish va B/B/B jadvalini to`ldirish.
B/B/B texnikasini qo`llash bo`yicha ko`rsatma.
1. Ma’ruza rejasiga mos holda 2-ustunni to`ldiring.
2. O`ylang, juftlikda hal eting va javob bering, ushbu savollar bo`yicha nimani bilasiz, 3-ustunni to`ldiring.
3. O`ylang, juftlikda hal eting va javob bering, ushbu savollar bo`yicha nimani bilish kerak, 4-ustunni to`ldiring.
4. Ma’ruzani o`qing va materiallar bilan tanishing.
5. 5-ustunni to`ldiring.
B/B/B jadvali (Bilaman/Bilishni hoxlayman/Bilib oldim)



Mavzu savoli

Bilaman

Bilishni hoxlayman

Bilib oldim

1.













2.













3.













4.













5.













2-topshiriq. “Bilib oldim” ustuni asosida “T” jadvalini to`ldirish. Nazariy qismdan tayanch iboralarni aniqlash va “T” jadvalini qurish.

Tayanch ibora

Mazmuni

1.




2.




...




n.






12-ma’ruzalar uchun adabiyotlar



  1. Горбань А.Н. Обучение нейронных сетей. М.: изд-во СССР-США СП “ParaGraph”, 1990. 160 с.

2. Розенблатт, Ф. Принципы нейродинамики: Перцептроны и теория механизмов мозга = Principlesof Neurodynamic: Perceptron sand the Theory of Brain Mechanisms. -М.: Мир, 1965. -480 с.
3. 13. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. Новосибирск: Наука, 1996. 276 с.
4. 21. И.А.Бессмертный. Искусственный интеллект - СПб: СПбГУ ИТМО, 2010. -132 с.

  1. 5. 22. Sankar K. Pal, Sushmita Mitra, Multilayer Perceptron, Fuzzy Sets, and Classification //IEEE Transactions on Neural Networks, Vol.3, N5,1992, pp. 683-696.

  2. 6. 23. Bernard Widrow, Michael A. Lehr, 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation //Artificial Neural Networks: Concepts and Theory, IEEE Computer Society Press, 1992, pp.327-354.

  3. 7. 24. Paul J. Werbos, Backpropagation Through Time: What It Does and How to Do It //Artificial Neural Networks: Concepts and Theory, IEEE Computer Society Press, 1992, pp.309-319.

12-ma’ruza uchun o’zini-o’zi tekshirish savollari



  1. “Perseptron” nomli neyron modeli kim tomonidan va nechanchi yilda yaratilgan?

  2. Neyron nima?

  3. NT qanday murakkab masalalarni yechishda qoʻllaniladi?

  4. Perseptron turdagi NT sxemasini keltiring?

  5. NTlar yordamida yechiladigan sinflash masalasi mohiyatini tushuntiring?

  6. NTlar yordamida yechiladigan klasterlash masalasi mohiyatini tushuntiring?

  7. NTlar yordamida yechiladigan approksimatsiyalash masalasi mohiyatini tushuntiring?

  8. NTlar yordamida yechiladigan avtoassotsiatsiyalash masalasi mohiyatini tushuntiring?

  9. NTlarni oʻrgatishning supervizorli, supervizorsiz va tasdiqlash usullarini tushuntiring?




Download 196.63 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling