Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor volume 2


Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor


Download 265.91 Kb.
bet6/8
Sana20.06.2023
Hajmi265.91 Kb.
#1627081
1   2   3   4   5   6   7   8
Bog'liq
40 Bozarov Dilmurod Uralovich (2)

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
VOLUME 2 | ISSUE 11
ISSN 2181-1784
SJIF 2022: 5.947
ASI Factor = 1.7
Hosil bo‘lgan tengsizlikning ikkala tarafini kvadratga oshirib, navbati bilan quyidagi tengkuchli tengsizliklarga ega bo‘lamiz:
,
,
,
.
Oxirgi tengsizlik barcha nuqtalar
uchun o‘rinli ekanligidan tengsizlikning to‘g‘ri ekanligi kelib chiqadi. Shu bilan aksioma (uchburchak aksiomasi) isbotlandi.
Shunday qilib, da aniqlangan
,
,
funksiya da metrika bo‘ladi.
belgilash kiritamiz.
3. Metrik fazodagi ikkita to‘plam orasidagi masofani topishda ikki o‘zgaruvchili funksiyaning xususiy hosilalarining tatbiqi
Metrik fazodagi ikkita va to‘plamlar orasidagi masofa deb, ushbu nomanfiy songa aytiladi
Quyidagi misol to‘plamlar orasidagi masofa tushunchasining ahamiyatini oshirishga xizmat qiladi. Bu misolda umumiy o‘rta ta’lim va oliy ta’lim
www.oriens.uz
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
VOLUME 2 | ISSUE 11
ISSN 2181-1784
SJIF 2022: 5.947
ASI Factor = 1.7
muassassalari matematika kurslarida uchraydigan amaliy masalalardan biri – ikkita egri chiziq orasidagi masofani topish metodikasi keltiriladi.
4-misol. dagi giperbolaning ikkita shoxlari orasidagi masofani toping.
Yechish. Ushbu to‘plamlar
,
giperbolaning shoxlari bo‘ladi.
,
– ixtiyoriy nuqtalar bo‘lsin. Ushbuga egamiz
.
Ikkita va o‘zgaruvchining
qiymatini topish talab etiladi. Xususiy hosilalarni topamiz:
funksiyasining eng kichik
=
;
=
;
Ushbu tenglamalar sistemasini yechamiz
ekanligidan
Birinchi tenglamadan ikkinchisini ayirib, hosil bo‘lgan tenglamani nisbatan yechamiz:
ga
www.oriens.uz

Download 265.91 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling