Оригинальные статьи / Original articles
Download 1.06 Mb. Pdf ko'rish
|
534-664-1-SM
grammnye produkty i sistemy = Software products and systems. 2017; no. 30(3) (In Russ.).
15. Koch T. Evaluation of CNN-based single-image depth estimation methods. Proceed- ings of the European Conference on Computer Vision (ECCV), 2018. 16. Eigen D., Puhrsch C., Fergus R. Depth map prediction from a single image using a multiscale deep network. Advances in Neural Information Processing Systems, 2014, pp. 2366-2374. arXiv: 1406.2283v1. Михальченко Д.И., Ивин А.Г., Сивченко О.Ю. и др. Применение глубоких нейронных сетей ... Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2019; 23(3): 113-134 131 17. Liu F., Shen C., Lin G., Deep convolutional neural fields for depth estimation from a single. The IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5162- 5170. DOI: 10.1109/ CVPR.2015.7299152. 18. Laina I., Rupprecht C., Belagiannis V., Tombari F., Navab N. Deeper depth predic- tion with fully convolutional residual networks. CoRR, abs/1606.00373. 2016. DOI: 10.1109/3dv.2016.32. arXiv: 1606.00373. 19. Li J., Klein R., Yao A. A two-streamed network for estimating fine-scaled depth maps from single rgb images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3372–3380. 20. Soldatova O.P., Lyozin I.A., Lyozina I.V., Kupriyanov A.V., Kirsh D.V. Primenenie nechetkikh neironnykh setei dlya opredeleniya tipa kristalliche-skikh reshetok, nablyudae- mykh na nanomasshtabnykh izobrazheniyakh [Application of fuzzy neural networks for de- fining crystal lattice types in nanoscale images]. Komp'yuternaya optika = Computer Optics. 2015; no. 39(5): 787-795. (In Russ.). DOI: 10.18287/0134-2452-2015-39-5-787-794. 21. Jalalvand A., Demuynck K., Neve W.D., Martensa J.-P. On the application of reser- voir computing networks for noisy image recognition. Neurocomputing. 2018; 277: 237-248. DOI: 10.1016/j.neucom.2016.11.100. 22. Dutta S., Manideep B.CS., Basha S.M., Caytiles R.D., Iyengar N.Ch.S.N. Classifica- tion of diabetic retinopathy images by using deep learning models. International Journal of Grid and Distributed Computing. 2018; no. 11(1), pp. 89-106. DOI: 10.14257/ ijgdc.2018.11.1.09. 23. Sirota A.A., Dryuchenko M.A. Obobshchennye algoritmy szhatiya izobrazhenii na fragmentakh proizvol'noi formy i ikh realizatsiya s ispol'zovaniem iskusstvennykh neironnykh setei [Generalized image compression algorithms for arbitrarily-shaped fragments and their im- plementation using artificial neural networks]. Komp'yuternaya optika = Computer Optics. 2015; 39(5): 751-761. (In Russ.). DOI: 10.18287/0134-2452-2015-39-5-751-761. 24. Nikonorov A.V., Petrov M.V., Bibikov S.A., Kutikova V.V., Morozov A.A., Kazan- skij N.L. Rekonstruktsiya izobrazhenii v difraktsionno-opticheskikh sistemakh na osnove svertochnykh neironnykh setei i obratnoi svertki [Image restoration in diffractive optical sys- tems using deep learning and deconvolution]. Komp'yuternaya optika = Computer Optics. 2017; no. 41(6), pp. 875-887. (In Russ.). DOI: 10.18287/2412-6179-2017-41-6-875-887. 25. Oleinik A.L., Kukharev, G.A. Algoritmy vzaimnoi rekonstruktsii izobrazhenii lits na osnove metodov proektsii v sobstvennye podprostranst [ Algorithms for Face Image Mutual Reconstruction by Means of Two-Dimensional Projection Methods]. Trudy SPIIRAN = SPIIRAS Proceedings. 2018; 2(57): 45-74. (In Russ.). DOI: 10.15622/sp.57.3. Информатика, вычислительная техника и управление / Computer science, computer engineering and control Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2019; 23(3): 113-134 132 26. Silberman N, Fergus R. Indoor scene segmentation using a structured light sensor. Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on; 2011, pp. 601-608. 27. Hu J., Ozay M., Zhang Y., Okatani T. Revisiting single image depth estimation: to- ward higher resolution maps with accurate object boundaries. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019, pp. 1043-1051. 28. Zhu J. Ma R. (2016), Real-time depth estimation from 2D images. Available at: http://cs231n.stanford.edu/reports/2016/pdfs/407_Report.pdf (accessed May 1, 2018). 29. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR), 2015, pp. 1- 14. arXiv: 1409.1556. 30. He L., Wang G., Hu Z. Learning depth from single images with deep neural network em- bedding focal length. IEEE Transactions on Image Processing, 2018, no. 27(9), pp. 4676-4689. 31. Liu M., Salzmann M., He X. Discrete-continuous depth estimation from a single im- age. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 716-723. DOI: 10.1109 / CVPR.2014.97. 32. Luo W., Schwing A.G., Urtasun R. Efficient deep learning for stereo matching. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5695- 5703. DOI: 10.1109/CVPR.2016.614. 33. Eigen D., Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. The IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2650-2658. DOI: 10.1109 / ICCV.2015.304. 34. Geiger A., Lenz A., Stiller C., Urtasun R. Vision meets robotics: the KITTI dataset. Download 1.06 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling