O‘zbekiston respublikasi oliy ta’lim, fan va innovatsiyalar vazirligi farg‘ona davlat unversiteti magistratura bo‘limi
Download 129.97 Kb.
|
Nochiqizli Gulnoza
Foydalanilgan adabiyotlar:
A.Yu.Loskutov, Dinamicheskiy xaos. Sistemы klassicheskoy mexaniki. UFN. Tom 177, №9, 989 (2007). N.V. Yevdokimov, V.P. Komolov, P.V. Komolov, Interferensiya dinamicheskogo xaosa gamiltonovыx sistem: Eksperiment i vozmojnosti radiofizicheskix prilojeniy. UFN. Tom 117, №7, 775 (2001). V.S. Aniщenko, T.E Vadivasova, G.A. Okrokversxov, G.I. Strelkova, Statisticheskie svoystva dinamicheskogo xaosa. UFN. Tom 175, №2, 163 (2005). Mudrov A.E. Chislennye metodы dlya PEVM na yazыkax beysik, fortran i paskal.Tomsk. MP”Rasko” 1991. Kuznesov. S. P. Dinamichiskiy xaos. M: Fizmatlit. 2001. 296c. Kuznesov. A. P, Kuznesov. S. P, Riskin. N. M. Nilineyie kalibaniya. M: Fizmatlit. 2002. 292c. Berje. P, Pomo. I, Vidal. K. Poryadok v xaose. O determinisnicheskom podxode k turbulentnosti. M: Mir. 1991. 368c. Mun. F. Xaoticheskie kolekolebaniya. M: Mir, 1990. 312c. M V Berry. Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard. European Journal of Physics,2:91 (1982). F.Lenz. Time-dependent Classical Billiards. Diploma Thesis in Physics. University of Heidelberg. 2006. W H Press, S A Teukolsky, W T Vetterling, and B P Flannery. Numerical Recipes in C, theArt of Scientific Computing. Cambridge University Press, 2nd edition edition, 2002. V. Doya, O. Legrand, F. Mortessagne, and Ch. Miniatura, “Light scarring in an optical fiber”, Phys.Rev. Lett. 88, 014102 (2002). Suhan Ree. “Fractal analysis on a closed classical hard-wall billiard using a simplified box-counting algorithm” February 4, 2008. S. Ree, arXiv:nlin.CD/0206003 (will appear in J. KoreanPhys. Soc.) (2002). Download 129.97 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling