O‘zbekiston respublikasi sog‘liqni saqlash vazirligi toshkent farmatsevtika instituti fizika, matematika va axborot texnologiyalari kafedrasi fizika fanidan farmatsiya fakulteti farmatsiya va sanoat farmatsiya fakultetlari yo`nalishlari


L Law of Conservation of Energy


Download 207.5 Kb.
bet28/44
Sana29.01.2023
Hajmi207.5 Kb.
#1139199
1   ...   24   25   26   27   28   29   30   31   ...   44
Bog'liq
Toshkent farmatsevtika instituti fizika, matematika va axborot t-fayllar.org

L




Law of Conservation of Energy:
Also known as the First Law of Thermodynamics, this is the principle that energy can never be created or destroyed, only converted from one form to another (e.g. the chemical energy of gasoline can be converted into the energy of motion of a car). The total amount of energy in an isolated system (or in the universe as a whole) therefore remains constant.


Law of Universal Gravitation:
Published by Sir Isaac Newton in 1687, and sometimes also known as the Universal Law of Gravity, this was the first formulation of the idea that all bodies with mass pull on each other across space. Newton observed that the force of gravitybetween two objects is proportional to the product of the twomasses, and inversely proportional to the square of the distance between them. Although the theory has since been superseded by Albert Einstein's General Theory of Relativity, it predicts the movements of the Sun, the Moon and the planets to a high degree of accuracy and it continues to be used as an excellent approximation of the effects of gravity for everyday applications (relativity is only required when there is a need for extreme precision, or when dealing with the gravitation of very massive objects).


Length Contraction:
The phenomenon, predicted by Albert Einstein’s Special andGeneral Theories of Relativity, whereby, from the relative context of one observer's frame of reference, space or length appears to decrease as the relative velocities increase.


Life:
A difficult and contentious phenomenon to define, life is usually considered to be a characteristic of organisms that exhibit certain biological processes (such as chemical reactions or other events that results in a transformation), and that are capable of growth through metabolism and are capable of reproduction. The ability to ingest food and excrete waste are also sometimes considered requirements of life (e.g. bacteria are usually considered to be alive, whereas simpler viruses, which do not feed or excrete, are not).
The two distinguishing features of living systems are sometimes considered to be complexity and organization (negative entropy). Some organisms can communicate, and many can adapt to their environment through internally generated changes, although these are not universally considered prerequisites for life.


Light:
Technically, this refers to electromagnetic radiation of a wavelength that is visible to the human eye, although in the broader field of physics, it is sometimes used to refer to electromagnetic radiation of all wavelengths, whether visible or not. It exhibits “wave-particle duality” in that it can behave as both waves and particles (photons). Light travels at a constant speed of about 300,000 kilometres per second in a vacuum.

Light Year:
A convenient unit for measuring the large distances in the universe. It is the distance that light travels in one year which, given that light travels at 300,000 kilometres per second, works out to about 9,460,000,000 kilometres (9.46 trillion kilometres).



Download 207.5 Kb.

Do'stlaringiz bilan baham:
1   ...   24   25   26   27   28   29   30   31   ...   44




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling