Positioning and Navigation Using the Russian Satellite System


Download 5.01 Kb.
Pdf ko'rish
bet24/35
Sana19.09.2017
Hajmi5.01 Kb.
#16028
1   ...   20   21   22   23   24   25   26   27   ...   35
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
Figure 8.3: GPS, GLONASS and combined GPS/GLONASS single difference positioning.

96
8 OBSERVATIONS AND POSITION DETERMINATION
570
580
590
600
610
620
141000
141500
142000
142500
143000
143500
Ellipsoidal
Heigh
t
[m]
GPS Time [s]
GPS only
GLONASS only
GPS + GLONASS
Figure 8.4: GPS, GLONASS and combined GPS/GLONASS single difference positioning, height compo-
nent.
Contrary to the absolute positioning example, it cannot be caused by the change in applicable GLONASS
satellite ephemeris data. New ephemeris data become effective at 142200 s GPS time, which is at the
end of the outlier. Satellite geometry neither does change during the period in question. Changing
satellite geometry does, however, cause a jump in the height solution at 143328 s like in the cause of the
absolute positioning example. Standard deviation of the GLONASS height component is 4.2 m around
a mean height of 590.5 m. As with the horizontal components, the combined GPS/GLONASS solution
also is affected by remaining GPS S/A, but to a less extent than the GPS only results. The mean
GPS/GLONASS height is 591.7 m with a standard deviation of 4.2 m.
8.1.3
Double Difference Positioning
Having available single differences from two observers U and R to two GLONASS satellites S and r,
∆P R
S
U R
= ∆
S
U R
+ c · (∆δt
U R
+ ∆L
U R,GLO
) + c · ∆δt
S,T rop
U R
+ ∆ε
S
U R
(8.1.45)
∆P R
r
U R
= ∆
r
U R
+ c · (∆δt
U R
+ ∆L
U R,GLO
) + c · ∆δt
r,T rop
U R
+ ∆ε
r
U R
(8.1.46)
one can subtract the single difference measurement to the reference satellite r from the single difference
measurement to the other satellite:
∆P R
S
U R
− ∆P R
r
U R
= ∆
S
U R
− ∆
r
U R
+ c · ∆δt
S,T rop
U R
− c · ∆δt
r,T rop
U R
+ ∆ε
S
U R
− ∆ε
r
U R
(8.1.47)
Now also the relative receiver clock error ∆δt
U R
+∆L
U R,GLO
(including the relative common hardware
delays) cancels out. Denoting the double difference terms ∆ ∗
S
U R
−∆∗
r
U R
as
∆∗
Sr
U R
, Eq. (8.1.47) trans-
forms to
∆P R
Sr
U R
=

Sr
U R
+ c ·
∆δt
Sr,T rop
U R
+
∆ε
Sr
U R
(8.1.48)
Linearizing the geometric ranges from the user station to the satellites, we obtain
∆P R
Sr
U R
=

Sr
U R
+
x
0
− x
S
S
0
· (x
R
− x
0
) −
x
0
− x
r
r
0
· (x
R
− x
0
) +
y
0
− y
S
S
0
· (y
R
− y
0
) −

8.1 Pseudorange Measurements
97
y
0
− y
r
r
0
· (y
R
− y
0
) +
z
0
− z
S
S
0
· (z
R
− z
0
) −
z
0
− z
r
r
0
· (z
R
− z
0
) +
(8.1.49)
c ·
∆δt
Sr,T rop
U R
+
∆ε
Sr
U R
where

Sr
U R
now denotes (
S
0

S
R
) − (
r
0

r
R
), the double difference geometric range from the
approximate user position to the satellites.
Again shifting known and modeled terms to the left-hand side of the equation and considering a set
of observations to n GLONASS satellites (not including the reference satellite r), we obtain a system of
observation equations in matrix notation:
l = A · x + ε
(8.1.50)
with
l =






∆P R
1r
U R


1r
U R
− c ·
∆δt
1r,T rop
U R
∆P R
2r
U R


2r
U R
− c ·
∆δt
2r,T rop
U R
..
.
∆P R
nr
U R


nr
U R
− c ·
∆δt
nr,T rop
U R






(8.1.51)
the vector of the known values,
A =











x
0
− x
1
1
0

x
0
− x
r
r
0
y
0
− y
1
1
0

y
0
− y
r
r
0
z
0
− z
1
1
0

z
0
− z
r
r
0
x
0
− x
2
2
0

x
0
− x
r
r
0
y
0
− y
2
2
0

y
0
− y
r
r
0
z
0
− z
2
2
0

z
0
− z
r
r
0
..
.
..
.
..
.
x
0
− x
n
n
0

x
0
− x
r
r
0
y
0
− y
n
n
0

y
0
− y
r
r
0
z
0
− z
n
n
0

z
0
− z
r
r
0











(8.1.52)
the design matrix,
x =



(x
R
− x
0
)
(y
R
− y
0
)
(z
R
− z
0
)



(8.1.53)
the vector of the unknowns, and
ε =






∆ε
1r
U R
∆ε
2r
U R
..
.
∆ε
nr
U R






(8.1.54)
the noise vector.
In a combined GPS/GLONASS scenario, with a GPS satellite i, a GLONASS satellite j and the
reference satellite r, two cases must be distinguished, depending on whether the reference satellite is a
GPS or a GLONASS satellite:
1.
The reference satellite is a GPS satellite.
From the single difference observations
∆P R
i
U R
= ∆
i
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
i,T rop
U R
+ ∆ε
i
U R
(8.1.55)
∆P R
j
U R
= ∆
j
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
U R,HW
+
(8.1.56)
c · ∆δt
j,T rop
U R
+ ∆ε
j
U R
∆P R
r
U R
= ∆
r
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
r,T rop
U R
+ ∆ε
r
U R
(8.1.57)

98
8 OBSERVATIONS AND POSITION DETERMINATION
one can form the double differences
∆P R
ir
U R
=

ir
U R
+ c ·
∆δt
ir,T rop
U R
+
∆ε
ir
U R
(8.1.58)
∆P R
jr
U R
=

jr
U R
+ c · ∆δt
U R,HW
+ c ·
∆δt
jr,T rop
U R
+
∆ε
jr
U R
(8.1.59)
The single difference receiver inter-system hardware delay ∆δt
U R,HW
remains in the mixed GLO-
NASS/GPS double difference.
2.
The reference satellite is a GLONASS satellite.
From the single difference observations
∆P R
i
U R
= ∆
i
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
i,T rop
U R
+ ∆ε
i
U R
(8.1.60)
∆P R
j
U R
= ∆
j
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
U R,HW
+
(8.1.61)
c · ∆δt
j,T rop
U R
+ ∆ε
j
U R
∆P R
r
U R
= ∆
r
U R
+ c · (∆δt
U R
+ ∆L
U R,GP S
) + c · ∆δt
U R,HW
+
(8.1.62)
c · ∆δt
r,T rop
U R
+ ∆ε
r
U R
one can form the double differences
∆P R
ir
U R
=

ir
U R
− c · ∆δt
U R,HW
+ c ·
∆δt
ir,T rop
U R
+
∆ε
ir
U R
(8.1.63)
∆P R
jr
U R
=

jr
U R
+ c ·
∆δt
jr,T rop
U R
+
∆ε
jr
U R
(8.1.64)
The single difference receiver inter-system hardware delay ∆δt
U R,HW
now cancels out in the GLO-
NASS/GLONASS double difference, but it shows up in the mixed GPS/GLONASS double difference
with the opposite sign instead.
The single difference receiver inter-system hardware delay ∆δt
U R,HW
remains as a fourth unknown
in the double difference observation equations. Depending on whether the reference satellite is a GPS or
a GLONASS satellite, it shows up with opposite sign either at the GLONASS or the GPS satellites.
Considering this fact, we obtain for the observation equations of a set of m GPS and n GLONASS
satellites (not including the reference satellite r):
l = A · x + ε
(8.1.65)
with
l =












∆P R
1r
U R


1r
U R
− k
GP S
· c · ∆δt
U R,HW,0
− c ·
∆δt
1r,T rop
U R
..
.
∆P R
mr
U R


mr
U R
− k
GP S
· c · ∆δt
U R,HW,0
− c ·
∆δt
mr,T rop
U R
∆P R
m+1,r
U R


m+1,r
U R
− k
GLON ASS
· c · ∆δt
U R,HW,0
− c ·
∆δt
m+1,r,T rop
U R
..
.
∆P R
m+n,r
U R


m+n,r
U R
− k
GLON ASS
· c · ∆δt
U R,HW,0
− c ·
∆δt
m+n,r,T rop
U R












(8.1.66)
with
k
GP S
=
0 , r ∈ GPS
−1 , r ∈ GLONASS
k
GLON ASS
=
1 , r ∈ GPS
0 , r ∈ GLONASS

8.1 Pseudorange Measurements
99
the vector of the known values,
A =


















x
0
− x
1
1
0

x
0
− x
r
r
0
y
0
− y
1
1
0

y
0
− y
r
r
0
z
0
− z
1
1
0

z
0
− z
r
r
0
k
GP S
..
.
..
.
..
.
..
.
x
0
− x
m
m
0

x
0
− x
r
r
0
y
0
− y
m
m
0

y
0
− y
r
r
0
z
0
− z
m
m
0

z
0
− z
r
r
0
k
GP S
x
0
− x
m+1
m+1
0

x
0
− x
r
r
0
y
0
− y
m+1
m+1
0

y
0
− y
r
r
0
z
0
− z
m+1
m+1
0

z
0
− z
r
r
0
k
GLON ASS
..
.
..
.
..
.
..
.
x
0
− x
m+n
m+n
0

x
0
− x
r
r
0
y
0
− y
m+n
m+n
0

y
0
− y
r
r
0
z
0
− z
m+n
m+n
0

z
0
− z
r
r
0
k
GLON ASS


















(8.1.67)
the design matrix,
x =





(x
R
− x
0
)
(y
R
− y
0
)
(z
R
− z
0
)
c · (∆δt
U R,HW
− ∆δt
U R,HW,0
)





(8.1.68)
the vector of the unknowns, and
ε =












∆ε
1r
U R
..
.
∆ε
mr
U R
∆ε
m+1,r
U R
..
.
∆ε
m+n,r
U R












(8.1.69)
the noise vector.
The single difference receiver inter-system hardware delay ∆δt
U R,HW
will, however, cancel, if two
separate reference satellites for GPS and for GLONASS are chosen. In that case, from the single difference
observations
∆P R
i
U R
= ∆
i
U R
+ c · (∆δt
U R
+∆L
U R,GP S
) + c · ∆δt
i,T rop
U R
+ ∆ε
i
U R
(8.1.70)
∆P R
r
GP S
U R
= ∆
r
GP S
U R
+ c · (∆δt
U R
+∆L
U R,GP S
) + c · ∆δt
r
GP S
,T rop
U R
+ ∆ε
r
GP S
U R
(8.1.71)
∆P R
j
U R
= ∆
j
U R
+ c · (∆δt
U R
+∆L
U R,GP S
) + c · ∆δt
U R,HW
+ c · ∆δt
j,T rop
U R
+ ∆ε
j
U R
(8.1.72)
∆P R
r
GLO
U R
= ∆
r
GLO
U R
+ c · (∆δt
U R
+∆L
U R,GP S
) + c · ∆δt
U R,HW
+ c · ∆δt
r
GP S
,T rop
U R
+
(8.1.73)
∆ε
r
GP S
U R
to GPS satellites i and r
GP S
and GLONASS satellites j and r
GLO
the double difference observations
∆P R
ir
GP S
U R
=

ir
GP S
U R
+ c ·
∆δt
ir
GP S
,T rop
U R
+
∆ε
ir
GP S
U R
(8.1.74)
∆P R
jr
GLO
U R
=

jr
GLO
U R
+ c ·
∆δt
jr
GLO
,T rop
U R
+
∆ε
jr
GLO
U R
(8.1.75)
can be formed.
Again shifting all known and modeled terms to the left-hand side of the equation and considering a set

Download 5.01 Kb.

Do'stlaringiz bilan baham:
1   ...   20   21   22   23   24   25   26   27   ...   35




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling