Positioning and Navigation Using the Russian Satellite System


Download 5.01 Kb.
Pdf ko'rish
bet33/35
Sana19.09.2017
Hajmi5.01 Kb.
#16028
1   ...   27   28   29   30   31   32   33   34   35

(8.6.10)
The PDOP as the influence of the satellite geometry on the precision of the computed position in
three-dimensional space can still be computed from the first three elements of the diagonal:
P DOP =

q
XX
+ q
Y Y
+ q
ZZ
But there are now two separate TDOP values, identifying the influence of satellite geometry on the
precision of determination of the two receiver clock offsets. The GPS TDOP is calculated from the
fourth element on the diagonal, whereas the GLONASS TDOP is computed from the fifth element on
the diagonal:
T DOP
GP S
=

q
tt
T DOP
GLON ASS
=

q
gg
An overall TDOP could be defined as
T DOP =
q
tt
+ q
gg
=
T DOP
2
GP S
+ T DOP
2
GLON ASS
Reflecting these two TDOPs, the GDOP as the influence of satellite geometry on the precision of the
overall solution (position and time) now becomes
GDOP =
q
XX
+ q
Y Y
+ q
ZZ
+ q
tt
+ q
gg
For computation of HDOP and VDOP, the geometrical part of the cofactor matrix is split and trans-
formed into a local cofactor matrix with respect to a topocentric coordinate system (east, north, up)
centered at the observation site. Thus, the formulation of HDOP and VDOP remain unchanged with
respect to the single system case, as does the PDOP.
Focusing instead on the alternative notation with the difference in system times as introduced in
Section 4.4.2, the design matrix reads
A =


















x
0
− x
1
1
0
y
0
− y
1
1
0
z
0
− z
1
1
0
1 0
..
.
..
.
..
.
..
.
..
.
x
0
− x
m
m
0
y
0
− y
m
m
0
z
0
− z
m
m
0
1 0
x
0
− x
m+1
m+1
0
y
0
− y
m+1
m+1
0
z
0
− z
m+1
m+1
0
1 1
..
.
..
.
..
.
..
.
..
.
x
0
− x
m+n
m+n
0
y
0
− y
m+n
m+n
0
z
0
− z
m+n
m+n
0
1 1


















(8.6.11)
=












a
11
a
12
a
13
a
14
a
15
..
.
..
.
..
.
..
.
..
.
a
m1
a
m2
a
m3
a
m4
a
m5
a
m+1,1
a
m+1,2
a
m+1,3
a
m+1,4
a
m+1,5
..
.
..
.
..
.
..
.
..
.
a
m+n,1
a
m+n,2
a
m+n,3
a
m+n,4
a
m+n,5













130
8 OBSERVATIONS AND POSITION DETERMINATION
for a set of m GPS and n GLONASS satellites and solving for the receiver clock offset with respect to
GPS system time, cf. Eq. (8.1.21).
The cofactor matrix now becomes
Q
X
=






















m+n
i=1
a
2
i1
m+n
i=1
a
i1
a
i2
m+n
i=1
a
i1
a
i3
m+n
i=1
a
i1
a
i4
m+n
i=m+1
a
i1
a
i5
m+n
i=1
a
i2
a
i1
m+n
i=1
a
2
i2
m+n
i=1
a
i2
a
i3
m+n
i=1
a
i2
a
i4
m+n
i=m+1
a
i2
a
i5
m+n
i=1
a
i3
a
i1
m+n
i=1
a
i3
a
i2
m+n
i=1
a
2
i3
m+n
i=1
a
i3
a
i4
m+n
i=m+1
a
i3
a
i5
m+n
i=1
a
i4
a
i1
m+n
i=1
a
i4
a
i2
m+n
i=1
a
i4
a
i3
m+n
i=1
a
2
i4
m+n
i=m+1
a
i4
a
i5
m+n
i=m+1
a
i5
a
i1
m+n
i=m+1
a
i5
a
i2
m+n
i=m+1
a
i5
a
i3
m+n
i=m+1
a
i5
a
i4
m+n
i=m+1
a
2
i5






















−1
(8.6.12)
the elements of which can be denoted as
Q
X
=








q
XX
q
XY
q
XZ
q
Xt
q
Xs
q
XY
q
Y Y
q
Y Z
q
Y t
q
Y s
q
XZ
q
Y Z
q
ZZ
q
Zt
q
Zs
q
Xt
q
Y t
q
Zt
q
tt
q
ts
q
Xs
q
Y s
q
Zs
q
ts
q
ss








(8.6.13)
The PDOP as the influence of the satellite geometry on the precision of the computed position in
three-dimensional space again remains unchanged with respect to the single system scenario, P DOP =

q
XX
+ q
Y Y
+ q
ZZ
. The GDOP as the influence of satellite geometry on the precision of the overall
solution (position and time) now becomes GDOP =

q
XX
+ q
Y Y
+ q
ZZ
+ q
tt
+ q
ss
, caring for the addi-
tional unknown to be solved for, the difference between GPS and GLONASS system times. Picking the
TDOP as the influence of satellite geometry on the precision of determination of the receiver clock offset
to (GPS) system time as T DOP =

q
tt
as in the single system case, leaves one term not accounted for
in the GDOP.

q
ss
can be interpreted as the influence of the satellite geometry on the precision of the
computed offset between GPS and GLONASS system times. For the sake of convenience, it further on
will be called SDOP (system time DOP). For a given measurement accuracy σ
0
the obtainable accuracy
for the offset between GPS and GLONASS system times therefore can be expressed as
σ
System T ime Of f set
= SDOP · σ
0
Accuracy in GPS / GLONASS system time offset
(8.6.14)
The combination of GPS and GLONASS observations, among other advantages of the combination,
improves the satellite geometry with respect to GPS or GLONASS observations alone. Figure 8.15 shows
actual GDOP values for Munich on February 26, 1999, computed from real GPS and GLONASS almanac
data valid at that time. The GLONASS DOP values are affected by the depleted constellation. For a
considerable time there are only three or less GLONASS satellites visible; these times are plotted with
a GDOP value of zero. At other times, with just enough satellites to compute a GLONASS positioning
solution, the satellite geometry is very unfavorable, as can be seen by the high DOP values, beyond the
scale of the plot. It can, however, easily be seen that the GDOP values for the combined GPS/GLONASS
constellation always is lower than the GDOP values for GPS or GLONASS alone. The combined geometry
is much better than the geometry of one system alone.
However, the fact that the satellites belong to different satellite systems is a slight disadvantage,
since one satellite measurement must be sacrificed for the determination of the offset between GPS and
GLONASS system time. Therefore, the geometry of the combined GPS/GLONASS satellites cannot be
as strong as the same geometry of only GPS or only GLONASS satellites.

8.6 Dilution of Precision
131
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
1
2
3
4
5
6
Dilution of Precision
GPS+GLO
GPS
GLONASS
Figure 8.15: GDOP values for 02/26/99.
In a combined constellation of m GPS and n GLONASS satellites, regarding all observed satellites
to be belonging to one system and thus having only one receiver clock offset, one would obtain for the
design matrix (8.6.11)
A =


















x
0
− x
1
1
0
y
0
− y
1
1
0
z
0
− z
1
1
0
1
..
.
..
.
..
.
..
.
x
0
− x
m
m
0
y
0
− y
m
m
0
z
0
− z
m
m
0
1
x
0
− x
m+1
m+1
0
y
0
− y
m+1
m+1
0
z
0
− z
m+1
m+1
0
1
..
.
..
.
..
.
..
.
x
0
− x
m+n
m+n
0
y
0
− y
m+n
m+n
0
z
0
− z
m+n
m+n
0
1


















=












a
11
a
12
a
13
a
14
..
.
..
.
..
.
..
.
a
m1
a
m2
a
m3
a
m4
a
m+1,1
a
m+1,2
a
m+1,3
a
m+1,4
..
.
..
.
..
.
..
.
a
m+n,1
a
m+n,2
a
m+n,3
a
m+n,4












(8.6.15)
The cofactor matrix (8.6.12) would become
Q
X
=
















m+n
i=1
a
2
i1
m+n
i=1
a
i1
a
i2
m+n
i=1
a
i1
a
i3
m+n
i=1
a
i1
a
i4
m+n
i=1
a
i2
a
i1
m+n
i=1
a
2
i2
m+n
i=1
a
i2
a
i3
m+n
i=1
a
i2
a
i4
m+n
i=1
a
i3
a
i1
m+n
i=1
a
i3
a
i2
m+n
i=1
a
2
i3
m+n
i=1
a
i3
a
i4
m+n
i=1
a
i4
a
i1
m+n
i=1
a
i4
a
i2
m+n
i=1
a
i4
a
i3
m+n
i=1
a
2
i4
















−1
(8.6.16)

132
8 OBSERVATIONS AND POSITION DETERMINATION
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
1
2
3
Geometric Dilution of Precision
Eq. (8.6.12)
Eq. (8.6.15)
Figure 8.16: Comparison of GDOP values from Eqs. (8.6.12) and (8.6.15).
Of course, apart from the different number of observed satellites, these matrices would be identical to
the matrices Eqs. (8.6.4) and (8.6.5). Again denoting the cofactor matrix as
Q
X
=





q
XX
q
XY
q
XZ
q
Xt
q
XY
q
Y Y
q
Y Z
q
Y t
q
XZ
q
Y Z
q
ZZ
q
Zt
q
Xt
q
Y t
q
Zt
q
tt





(8.6.17)
and forming the DOP values
GDOP
=

q
XX
+ q
Y Y
+ q
ZZ
+ q
tt
P DOP
=

q
XX
+ q
Y Y
+ q
ZZ
(8.6.18)
T DOP
=

q
tt
one would obtain PDOP and TDOP identical in formulation to the values as derived from Eq. (8.6.12).
The same holds true to the HDOP and VDOP, which are decompositions of the PDOP. In addition,
the numerical values for PDOP, HDOP, VDOP and TDOP are approximately the same as those from
Eq. (8.6.12). However, this does not hold true for the GDOP value. The GDOP computed in this way
would lack the SDOP component. Due to the quadratic nature of the elements q
ii
on the diagonal of
the cofactor matrix, the GDOP value computed this way would be too small, yielding too optimistic an
accuracy of the overall position and time solution.
Figures 8.16 to 8.18 show these different DOP values, computed according to Eqs. (8.6.12) and
(8.6.15). Like in Figure 8.15, data were computed for February 26, 1999, in Munich, using GPS and
GLONASS almanac data valid at that time.

8.6 Dilution of Precision
133
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
1
2
3
Position Dilution of Precision
Eq. (8.6.12)
Eq. (8.6.15)
Figure 8.17: Comparison of PDOP values from Eqs. (8.6.12) and (8.6.15).
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
1
2
3
Time Dilution of Precision
Eq. (8.6.12)
Eq. (8.6.15)
Figure 8.18: Comparison of TDOP values from Eqs. (8.6.12) and (8.6.15).

134
8 OBSERVATIONS AND POSITION DETERMINATION

135
9
GPS/GLONASS Software Tools
A number of GLONASS and GPS/GLONASS software tools were created during the work on this topic.
The purpose of these tools was to test and evaluate the algorithms introduced in the previous chapters.
All of the results presented in this work were obtained using this software.
Among the tools created are a GPS/GLONASS planning tool and different tools for processing of
GLONASS and GPS/GLONASS measurements. A decoder to convert measurements from different
receiver types available at IfEN to RINEX format also belongs to this software. All these tools started
out as MS-DOS programs and were later re-written to run under the new 32-bit Windows environments
(Windows 95 and Windows NT).
The GPS/GLONASS mission planning tool – as is expressed in its name – is intended to support
a GPS/GLONASS user in planning a surveying mission. Prior to 1994, before GPS reached its Initial
Operational Capability (IOC) with all 24 satellites operational, similar tools were used to check satellite
availability and geometry (DOP values) based on current GPS almanac data before scheduling GPS
surveys. With GPS reaching its IOC and later FOC, these tools lost their importance, because the
complete satellite constellation now usually provided sufficient satellite coverage and geometry 24 hours
a day.
But GLONASS reached its full constellation in 1996 only to see it starting to dwindle again imme-
diately. Today, GLONASS again is far away from a full satellite constellation. Thus, mission planning
is still very important for GLONASS. Therefore, the mission planning tool was created. It calculates
satellite positions from GPS and GLONASS almanac data for epochs within a specified time span. For
a given user location and elevation mask, the number of visible satellites can then be computed, along
with the times of visibility, elevations and azimuth angles of the individual satellites. These data can
be presented in different graphs, including a polar plot. Of course, the different DOP values can be
computed and presented, too.
Figure 9.1 shows a screen shot of this GPS/GLONASS planning tool.
A decoder was written to convert measurement files recorded by IfEN’s different GPS/GLONASS
receivers to RINEX2 formatted observation and navigation files for purposes of archiving and post-
processing. The RINEX (Receiver Independent Exchange) format (Gurtner, 1998) was introduced in
1990 for the purpose of archiving and exchanging GPS measurements of different receiver types and insti-
tutions within the IGS. Different file formats were defined for observation files (satellite measurements),
navigation files (ephemeris data) and meteorological files (weather data). RINEX version 2 as introduced
in 1993 provided the possibility to include measurements to GLONASS satellites in the observation files.
In 1997, another file format was defined for the exchange of GLONASS ephemeris data, since the pa-
rameters used to describe GLONASS broadcast ephemerides differ from those used for GPS satellites. In
April 1998, Version 2.01 was introduced for the GLONASS navigation files, correcting a mistaken sign
convention for clock parameters.
IfEN has available three different types of combined GPS/GLONASS receivers. In 1994, a couple of
3S Navigation R-100/R-101 receivers were purchased. In 1996, two Ashtech GG24 OEM boards were
acquired, which were integrated into full-scale receivers, adding a power supply and a casing. These
receivers were joined by one MAN GNSS-200 receiver, which was borrowed from the manufacturer under
a long-term testing agreement. The GPS/GLONASS decoder was written to convert measurement data
from these receivers to RINEX2.
The decoder creates RINEX observation as well as GPS and GLONASS navigation files from the
measurements and ephemeris data contained in the receiver files. Besides that, almanac files can be
created as input for the mission planning tool. For testing purposes, satellite measurements can be
filtered out using different criteria. It is e.g. possible to decode only measurement data from specified
satellites (or from all but some specified satellites). Other criteria include the signal-to-noise ratio of
the measurements or the satellite elevation, where this is included in the satellite data (in the Ashtech

136
9 GPS/GLONASS SOFTWARE TOOLS
GG24). Measurement data can also be filtered by frequency band and/or code. This way, e.g. only
P-code measurements can be decoded, or only L
1
C/A-code measurements, or only L
2
, or . . .
During a decoding run, the assignment of satellites to the different receiver hardware channels can be
displayed, together with the number of decoded measurements.
Figure 9.2 shows a screen shot of the GPS/GLONASS decoder.
A real-time version of the decoder reads data online from a receiver connected to a serial port and
creates RINEX files in specified intervals.
The GPS/GLONASS processing tools were created to compute user positions from GPS and GLO-
NASS satellite observations, using different algorithms. The single point positioning tool computes po-
sitions from observation data recorded at one site, whereas the differential positioning tool employs
observations recorded simultaneously at two sites to calculate the position of one receiver, while the
other (reference) site is held fixed.
Similar to the RINEX decoder, satellites and measurements to participate in the positioning solution
can be selected using a number of criteria, such as satellite number, SNR, elevation mask or frequency
band and code. In addition, a DOP threshold can be specified for minimum requirements on the satellite
geometry. For evaluating the influence of the coordinate transformation from PZ-90 to WGS84, different
coordinate transformations can be applied to GLONASS satellite positions prior to computing the user
position.
Either raw pseudoranges, carrier-smoothed pseudoranges or carrier phase ranges (in the differential
tool) can be used to compute the receiver position. Computed positions are output epoch-wise in tabular
form and in different graphs, e.g. as scatter plots, depicting the distribution of the positioning solutions
in the horizontal plane.
For testing different processing algorithms or formulations of the observation equations (e.g. single
or double difference processing), these algorithms can easily be implemented in this test software by
modifying the source code and re-compiling the software.
Figure 9.3 shows a screen shot of the GPS/GLONASS absolute positioning tool.

137
Figure 9.1: Screen shot of the GPS/GLONASS mission planning tool.
Figure 9.2: Screen shot of the GPS/GLONASS RINEX decoder.

138
9 GPS/GLONASS SOFTWARE TOOLS
Figure 9.3: Screen shot of the GPS/GLONASS absolute positioning tool.

139
10
Summary
After a short introduction to the history of GLONASS, the system has been described in detail. It was
shown that GPS and GLONASS are very similar systems. However, in all their similarity, there are also
differences between these two systems. These differences, and how they affect the combined evaluation
of GPS and GLONASS satellite observations, have been worked out.
The first of these differences is the different reference frames for time used by GPS and by GLONASS.
Both GPS and GLONASS use their own system time scale. In addition, both system time scales are
related to different realizations of UTC. GPS system time is related to UTCUSNO, whereas GLONASS
system time is related to UTCSU. The difference between these two time frames is not known in real-
time. However, this problem can be easily overcome by introducing the offset between the system times
as an additional unknown in the observation equation. This means sacrificing one observation to solve
for that additional parameter. But this is not a problem, as long as the number of additional satellites
(compared to observations to one satellite system only) is greater than one. With only one additional
satellite, the additional observation will only contribute to the determination of the difference in system

Download 5.01 Kb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   35




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling