Практикум по метрологии, стандартизации и сертификации: Учебное пособие /А. А климов, А. С. Тюриков/ Красноярск, 2008. 149 с
Download 2.24 Mb.
|
Учебное пособие к лабораторным работам
16.1.1 Принципы действия и устройство генераторных и параметрических преобразователей неэлектрических величин.
К генераторным измерительным преобразователям относятся термоэлектрические и пьезоэлектрические преобразователи Термоэлектрические преобразователи (термопары). Эти преобразователи применяются для измерения температуры. Принцип действия термопары поясняется рис. 1.2, а, где изображена термоэлектрическая цепь, составленная из двух разнородных проводников А и В . Термоэлектрические цепи Рис.16.2 Точки 1 и 2 соединения проводников называются спаями термопары. Если температуры t спаев 1 и 2 одинаковы, то ток в термоэлектрической цепи отсутствует. Если же температура одного из спаев (например, спая 1) выше, чем температура спая 2, то в цепи возникает термоэлектродвижущая сила (ТЭДС) Е, зависящая от разности температур спаев Если поддерживать температуру спая 2 постоянной, то Эту зависимость используют для измерения температуры с помощью термопар. Для измерения ТЭДС электроизмерительный прибор включают в разрыв спая 2 (рис.16.2, б). Спай 1 называют горячим (рабочим) спаем, а спай 2 - холодным (концы -2 и 2' называют свободными концами). Чтобы ТЭДС термопары однозначно определялась температурой горячего спая, необходимо температуру холодного спая поддерживать всегда одинаковой. Для изготовления электродов термопар используют как чистые металлы, так и специальные сплавы стандартизованного состава. Градуировочные таблицы для стандартных термопар составлены при условии равенства температуры свободных концов 0°С. На практике не всегда удается поддерживать эту температуру. В таких случаях в показания термопары вводят поправку на температуру свободных концов. Существуют схемы для автоматического введения поправок. Конструктивно термопары выполняются в виде двух изолированных термоэлектродов с рабочим спаем, получаемым способом сварки, помещенных в защитную арматуру, предохраняющую термопару от внешних воздействий и повреждений. Рабочие концы термопары выведены в головку термопары, снабженную зажимами для включения термопары в электрическую цепь. В табл.16.1 приведены характеристики термопар, выпускаемых промышленностью. Таблица16.1- Характеристики термопар
Для измерения высоких температур применяют термопары ПП, ПР и ВР. Термопары из благородных металлов используют при измерении с повышенной точностью. В зависимости от конструкции термопары могут иметь тепловую инерцию, характеризуемую постоянной времени от единиц секунд до нескольких минут, что ограничивает возможность их применения для измерения быстроменяющихся температур. Кроме включения измерительного прибора в спай термопары возможно включение прибора в разрыв одного из термоэлектродов (рис.16.2, в). Такое включение«в электрод» позволяет измерять разность температур t1- t2. Например, может быть измерен перегрев обмоток трансформатора над температурой окружающей среды при его испытаниях. Для этого рабочий спай термопары заделывают в обмотку, а свободный спай оставляют при температуре окружающей среды. Требование постоянства температуры свободных концов термопары вынуждает по возможности удалять их от места измерения. Для этой цели применяют так называемые удлиняющие или компенсационные провода КП, подключаемые к свободным концам термопары с соблюдением полярности (рис.16.2,г). Компенсационные провода составляются из разнородных проводников, которые в интервале возможных колебаний температуры свободных концов развивают в паре между собой такую же ТЭДС, как и термопара. Поэтому, если места подключения компенсационных проводов находятся при температуре t2, а температура в месте подключения термопары к прибору t0, то ТЭДС термопары будет соответствовать ее градуировке при температуре свободных концов t0. Максимальная развиваемая стандартными термопарами ТЭДС составляет от единиц до десятков милливольт. Для измерения ТЭДС могут применяться магнитоэлектрические, электронные (аналоговые и цифровые) милливольтметры и потенциометры постоянного тока. При использовании милливольтметров магнитоэлектрической системы следует иметь в виду, что измеряемое милливольтметром напряжение на его зажимах , где I-ток в цепи термопары, а Rв- сопротивление милливольтметра. Так как источником тока в цепи является термопара, то , где RВН - сопротивление участка цепи внешнего по отношению к милливольтметру (т.е. электродов термопары и компенсационных проводов). Поэтому измеряемое милливольтметром напряжение будет равно . Таким образом, показания милливольтметра тем больше отличаются от ТЭДС термопары, чем больше отношение RВH /RB. Для уменьшения погрешности от влияния внешнего сопротивления милливольтметры, предназначенные для работы с термопарами (так называемые пирометрические милливольтметры) градуируются для конкретного типа термопар и при определенном номинальном значении RВН, указываемом на шкале прибора. Пирометрические милливольтметры серийно выпускаются классов точности от 0,5 до 2,0. Входное сопротивление электронных милливольтметров очень велико, и влияние сопротивления RВН на показания пренебрежимо мало. Download 2.24 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling