Предмет и методы патологической физиологии. Общие принципы и типы медико-биологических экспериментов. Моделирование болезней и патологических процессов. Примеры моделей. Значение патофизиологии для клиники


Download 1.99 Mb.
bet26/118
Sana18.11.2023
Hajmi1.99 Mb.
#1783454
1   ...   22   23   24   25   26   27   28   29   ...   118
Bog'liq
shpory-1 patshiz

Старение по ошибке
Была впервые предложена Л. Оргелем (1963). Она основывается на предположении, что основной причиной старения является накопление с возрастом генетических повреждений в результате мутаций, которые могут быть как случайными (спонтанными), так и вызванными различными повреждающими факторами (ионизирующая радиация, стрессы, ультрафиолетовые лучи, вирусы, накопление в организме побочных продуктов химических реакций и другие). Гены, таким образом, могут просто терять способность правильно регулировать те или иные активности в связи с накоплением повреждений ДНК.
В то же время существует специальная система репарации, обеспечивающая относительную прочность структуры ДНК и надежность в системе передачи наследственной информации. В опытах на нескольких видах животных показана связь между активностью систем репарации ДНК и продолжительностью жизни. Предполагается ее возрастное ослабление при старении. Роль репарации отчетливо выступает во многих случаях преждевременного старения и резкого укорочения длительности жизни. Это относится, прежде всего, к наследственным болезням репарации (прогерии, синдром Тернера, некоторые формы болезни Дауна и другие). В то же время имеются новые данные о многочисленных репарациях ДНК, которые используются как аргумент против гипотез ошибок. В статье под названием «Наука отрицает старость» французский исследователь Р. Россьон (1995) полагает, что в свете этих фактов теория накопления ошибок в нуклеотидных последовательностях требует пересмотра. Все же репарация, видимо, не приводит к 100% исправлению повреждений.
Истребление свободных радикалов
Изображения или модели ДНК, РНК и белковых молекул часто представляются в виде жестких, статичных конструкции наподобие мостов; на самом же деле это нестабильные бил длинные, похожие на цепи структуры, состоящие из тысяч молекул, которые довольно легко распадаются на звенья. Внутри клетки они постоянно подвергаются атакам со стороны других молекул—одни из них представляют обычные продукты клеточного метаболизма. другие — вещества, загрязняющие окружающую среду, и частности свинец. Таким образом, в клетке постоянно образуются новые молекулы, заменяющие поврежденные. В процессе обмена веществ образуются молекулы Особою рода, которые называются свободными радикалами, они имеют сильную тенденцию соединяться с другими молекулами. Иногда клетки производят свободные радикалы для облегчения процесса обмена веществ, и появляются они чаще всего в ходе тех реакций, которые потребляют кислород для «сжигания» углеводов и протекают с выделением энергии. Порой свободные радикалы возникают случайно, когда кислород, всегда присутствующий в клетке и обладающий высокой активностью, соединяется с молекулми клетки.
По определению Алекса Комфорта, свободный радикал—это «высокоактивный химический агент, готовый соединиться с чем угодно». В результате бесконтрольные свободные радикалы могут причинить серьезный вред клеточным мембранам, а также молекулам ДНК и РНК. Это обстоятельство делает их главным определяющим фактором биологического старения. Один из способов борьбы со старением, в котором повинны свободные радикалы - применение так называемых антиоксидантов.
2) Фагоциты подразделяются на фагоциты крови (гранулоциты-микрофаги, моноциты-макрофаги) и оседлые фагоциты тканей (мононуклеарные фиксированные фагоциты)
Нейтрофилы – обладают азурофильными цитоплазматическими гранулами, состоящими из лизосом и пероксисоми более мелкими специф гранулами, содержащими нелизосомные ферменты (лизоцим, щелочную фосфатазу, лактоферрин идр.) Нейтрофилы отличаются содержанием неферментативных катионных белков, обладающих бактерицидной и хемотаксической активностью и нейтрофильного пирогенна.не облад выраженной способностью к синтезу медиаторов воспаления.
Мононуклеарные фагоциты – происходят из промоноцитов костного мозга, идентифицируются в крови как моноциты и, в конечном итоге, необратимо становятся тканевыми макрофагами. Они формируют систему мононуклеарных фагоцитов, куда вход гистиоциты, своб и фиксирован макрофаги лимфоидной ткани, альвеолярные, перитонеальные макрофаги, кл Купфера идр. В отличие от нейтрофилов, макрофаги обладают выраженными секреторными и синтетическими функциями. Ряд возбудителей фагоцитируется только макрофагами: микобактерии, бруцеллы, сальмонеллы, токсоплазмы, это же касается и поражённых вирусами клеток. Макрофаги гетерогенны в функциональном отношении: среди них имеются фагоциты, детерминированные на метаболическую активацию, и фагоциты, кооперирующиеся с лимфоцитами в иммунном ответе. Секреция и синтез медиаторов воспаления присуща в основном первым. Вторые способны продуцировать монокины, влияющие на хемотаксис и функции лимфоцитов.
Цитокины:
Главный источник ц при воспалении – макрофаги и моноциты. М/б и нейтроф, лимфоциты, эндотел кл и др. Наиболее изучены из них - интерлейкин-1 и фактор некроза опухзоли. Основные эффекты: повыш сос проницаемость, адгезию и эмиграцию лей, стимулир нейтроф и моноцитов к умерщвлен , поглощен, перевариванию м/о, усиливают фагоцитоз путём опсонизации, стимул пролиферацию и дифференцировку кл, опосредуют тканевую деструкцию (патогенез заболеваний соед. тк). Ц взаимодействуют между собой, с простогландинами, нейропептидами и др. медиаторами.
3) Сердечная недостаточность
Недостаточность сердца развивается при несоответствии между предъявляемой сердцу нагрузкой и его способностью производить работу, которая определяется количеством притекающей к сердцу крови и сопротивлением изгнанию крови в аорте и легочном стволе. Следовательно, недостаточность сердца возникает тогда, когда сердце не может при данном сопротивлении перекачать в артерии всю кровь, поступившую по венам.
Классификация
1. по скорости течения: острая, подострая, хроническая
2.По ст вовлечения в процесс отделов сердца: правожелудочковая, левожелудочковая, тотальная.
3. По этиологии и патогенезу:
- Недостаточность сердца от перегрузки развивается при заболеваниях, при которых увеличивается или сопротивление сердечному выбросу, или приток крови к определенному отделу сердца. При этом к сердцу с нормальной сократительной способностью предъявляются чрезмерные требования. Перегрузка может быть повышенным сопротивлением (сосудистый спазм, сужение восход аорты идр). м/б повышенным V притекающей крови (клапан пороки, артериовенозные шунты)
- Недостаточность сердца при повреждении миокарда, вызванном инфекцией, интоксикацией, гипоксией, авитаминозом, нарушением венечного кровообращения, утомлением, некоторыми наследственными дефектами обмена. При этом недостаточность развивается даже при нормальной или сниженной нагрузке на сердце.
- Смешанная форма недостаточности сердца возникает при различном сочетании повреждения миокарда и его перегрузки, например при ревматизме, когда наблюдается комбинация воспалительного повреждения миокарда и нарушения клапанного аппарата. Этот вариант недостаточности сердца возникает и в тех случаях, когда вследствие дистрофических изменений или гибели части мышечных волокон сердца на оставшиеся приходится повышенная нагрузка.
Механизмы развития: миокард не справляется с нагрузкой, нарушается биоэнергетика. Сущ три основных биоэнергетических процесса выработка, накопление, трата энергии.
Выработка энергии: Основной источник энергии в сердце – жирные кислоты ( 1 мол-ла пальмитиновой кислоты даёт 138 молекул АТФ). При гипоксии происходит ингибирование метаболизма жирных кислот и накопление уровня лактата приводит к их накоплению. В этих условиях своб жирн к-ты могут оказать прямое токсическое действие на кардиомиоциты и усугубить степень повреждения сердечной мышцы.
Накопление энергии: происходит в процессе фосфорилирования, когда аэробным или анаэробным путём образуются макроэргические фосфорные соединения (АТФ, КФ), в их макроэргических фосфорных связях накапливается энергия.
Высвобождение энергии происходит в результате перехода энергии АТФ в энергию актомиозина, последний меняя своё физико-химическое состояние осуществляет сократительный акт. Нарушение на любом этапе приводит к сердечной недостаточности.
По Шабаловой
Для сокращения нужно:
1. сократительные белки ( при нарушении обмена вещ-в, нарушается акт сокращения)
2. АТФ (тоже образуется при обмене вещ-в + см.выше)
3. кальций (для кальция нужен натрий, для натрия импульс, для импулься ПП, для него калий-натриевый насос, для него атф)
4. правильная внутрисердечная гемодинамика(приток крови)
При нарушении на любом уровне, наступает СН.
Основные проявления дых.недост-ти:
1.Повышение конечного диастолического р в полости желудочков из-за увеличения конечного диастолического объёма (объём крови, ост-ся в желудочках после систолы) из-за ослабления сократительной ф-ции миокарда.
2.Дилатация сердца
3. Изменение мин V (как правило уменьшается)
4. Повышение з в венах
5. Отёки
4)Стресс – неспецифический нейроэндокринный компонент мобилизацион ответа целостного организма на любое предъявляемое требование.
Стрессоры:
-раздражители, реально угрожающие гомеостазу; например боль, гипоксия и тд.
-раздражители, потенциально опасные
- раздражители неожиданные или нарушающие стереотип.
Стресс как нейроэндокринный процесс впервые описан канадским патофизиологом Г.Селье в 1936 году.
Стадии
1. Стадия тревоги. Осуществляется выработка гипоталамических сигналов, запуск стресс(кортиколиберин, вазопрессин, симпатический нервный сигнал). Начинается продукция аденогипофизарных гормонов-регуляторов стресса (пропиомеланокортин и его производные, включая АКТГ)
2. Стадия резистентности. Формируется общий адаптационный синдром(ОАС). Организм насыщается глюкокортикоидами и другими кортикостероидными гормонами, а также катехоламинами. Увеличение т-та кислорода и энергосубстратов. В рез-те острого кнтринсулярного д-я стрессорных гормонов на метаболизм происх перераспределение энергетическ ресурсов в пользу орг и тк, располагающих инсулин-независим транспортёрами глю (ЦНС, миокард, диафрагм дых мышца, сами надпочечники, гонады, ретина и др). Мобилизуются эндогенные пути получения глю – гликогенолиз и глюконеогенез. При этом часть орг временно оказывается в состоянии энергетической депревации.(лим.орг, соед.тк, оп-двиг аппарат, полые орг жкт, сосудист ст и др)
3.При сильных и длительных стрессирующих возд-х или наличии недостаточности ф-ций гипоталамуса, гипофиза, надпочечников – функц ресурсы нейро-эндокрин ап могут быть превышены. Стресс доходит до ст истощения. – наступ необратим некробиотическ и апоптотические изменения. Стресс, приведший к ст истощения называется дистресс.
При норм тече ст истощении не наступает и после прекращения действия стрессора бывает фаза «физиологического выхода из стресса». Для её осуществления необходимы биорегуляторы(эндогенные опиаты, андрогены, инсулин идр.) Такое развитие событий называется эустресс.
16
1) особенности детского возраста в патологии
Кр, того у н/р недоразвиты все системы.

Возрастной период

Характер воспаления

Клинические проявления

Эмбрион
Плод ранний

Поздний

Н/р


Преоблад альтерация, фагоцитоз выполн формообразоват ф-цию, сосудист комп-отсутств
Пролиферац преоблад. Сосуд компонент слабый, барьерная роль лимфоузлов не выражена
Тоже самое, более сформирован сос комп, генерализация инфекции
1.специф морфолог оформлен-е инф-ции
2.нед-ть сос комп
3.незавершён фагоцитоз
4генерализац вследствие размножения м/о в л/у



Пороки развития различн орг и сист

Гиперпластич процессы, фиброэластоз эндокарда. Цирроз, глиоз


В/у инф-ция(туб-з, сифилис, токсоплазмоз)

Омфалит, пиодермия,пневмония, сепсис, флебит, флегмона н/р



2) фагоцитоз открыл И.И Мечников на морских звёздах в 1883 году.
фагоцитоз - т.е. захват, убиение и переваривание бактерий, а так же переваривание продуктов распада тканей и клеток собственного организма. В ходе фагоцитоза различают 4 стадии: 1) стадия приближения фагоцита к объекту; 2) стадия прилипания фагоцита к объекту; 3) стадия поглощения фагоцитом объекта; 4) стадия внутриклеточных превращений поглощенного объекта. Первая стадия объясняется способностью фагоцитов к хемотаксису. В механизмах прилипания и последующего поглощения фагоцитом объекта большую роль играют опсонины - антитела и фрагменты комплемента, плазменные белки и лизоцим. Установлено, что определенные участки молекул опсонинов связываются с поверхностью атакуемой клетки, а другие участки той же молекулы - с мембраной фагоцита. Механизм поглощения не отличается от прилипания - захват осуществляется путем постепенного обволакивания фагоцитом микробной клетки, т.е. по-существу путем прогрессирующего прилипания поверхности фагоцита к поверхности микроба до тех пор, пока весь объект не будет "обклеен" мембраной фагоцита. Образуется фагосома. Образование фагосомы начинает стадию внутриклеточных превращений поглощенного объекта внутри фагосомы, т.е. вне внутренней среды фагоцита. Основная часть внутри-клеточных превращений поглощенного при фагоцитозе объекта связана с дегрануляцией - т.е. переходом содержимого цито-плазматических гранул фагоцитов внутрь фагосомы. В этих гранулах у всех облигатных фагоцитов содержится большое количество биологически активных веществ преимущественно ферментов, которые убивают и затем переваривают микробы и другие поглощенные объекты.

Download 1.99 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   118




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling