Предмет: тема: курсовая работа


Обобщение и абстрагирование


Download 0.79 Mb.
bet11/16
Sana23.06.2023
Hajmi0.79 Mb.
#1652581
TuriКурсовая
1   ...   8   9   10   11   12   13   14   15   16
Bog'liq
Курсовая титул рус (2)

Обобщение и абстрагирование

Обобщение и абстрагирование – два логических приема, при­меняемые почти всегда совместно в процессе познания.
Обобщение — это мысленное выделение, фиксирование каких-ни­будь общих существенных свойств, принадлежащих только данному классу предметов или отношений.
Абстрагирование — это мысленное отвлечение, отделение общих, существенных свойств, выделенных в результате обобщения, от прочих несущественных или необщих свойств рассматриваемых предметов или отношений и отбрасывание (в рамках нашего изучения) последних.
Обобщение и абстрагирование неизменно применяются в процес­се формирования понятий, при переходе от представлений к понятиям и, вместе с индукцией, как эвристический метод.
Под обобщением, понимают также переход от единичного к общему, от менее общего к более общему.
Конкретизация
Основана на известном правиле вывода
ух Р (х)
Р(а) '
называемом правилом конкретизации.
Под конкретизацией понимают обратный переход — от более об­щего к менее общему, от общего к единичному.
Если обобщение используется при формировании понятий, то конкретизация используется при описании конкретных ситуаций с помощью сформированных ранее понятий.
Индукция
Переход от частного к общему, от единичных фактов, уста­новленных с помощью наблюдения и опыта, к обобщениям является закономерностью познания. Неотъемлемой логической формой такого перехода является индукция, представляющая собой метод рассуж­дений от частного к общему, вывод заключения из частных посылок (от лат. inductio — наведение).
Обычно, когда говорят «индуктивные методы обучения», имеют в виду применение неполной индукции в обучении. Дальше, говоря «индукция», будем иметь в виду неполную индукцию.
Ввиду недостоверности заключения индукция не может служить методом доказательства. Но она является мощным эвристическим методом, т. е. методом открытия новых истин. В таком качестве ин­дукция должна широко применяться в школьном обучении в рамках методов, ориентированных на обучение учащихся деятельности по приобретению новых знаний
На отдельных этапах обучения, в частности в начальной школе, обучение математике ведется преимущественно индуктивными мето­дами. Здесь индуктивные заключения достаточно убедительны пси­хологически и в большинстве остаются пока (на этом этапе обучения) недоказанными. Можно обнаружить лишь изолированные «дедуктив­ные островки», состоящие в применении несложных дедуктивных рас­суждений в качестве доказательств отдельных предложений.
Дедукция
Дедукция (от лат. deductio — выведение) в широком смысле представляет собой форму мышления, состоящую в том, что новое предложение (а точнее, выраженная в нем мысль) выводится логическим путем, т. е. по определенным правилам логического вывода (следования) из некоторых известных предложений (мыслей).
Впервые теория дедукции (логического вывода) была разработа­на Аристотелем. Эта теория развивалась, совершенствовалась с раз­витием науки логики. Особое развитие с учетом потребностей ма­тематики она получила в виде теории доказательства в математичес­кой логике.
Под обучением доказательству мы понимаем обучение мысли­тельным процессам поиска и построения доказательства, а не воспро­изведению и заучиванию готовых доказательств. В таком понимании это педагогическая задача первостепенного общеобразовательного и воспитательного значения, выходящего за рамки математического образования. Учить доказывать означает прежде всего учить рас­суждать, а это одна из основных задач обучения вообще. Что же ка­сается значимости этой задачи для усвоения математических знаний, то она соразмерна значимости доказательства в самой математике.

Download 0.79 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   16




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling