Предмет: тема: курсовая работа
Обобщение и абстрагирование
Download 0.79 Mb.
|
Курсовая титул рус (2)
- Bu sahifa navigatsiya:
- Конкретизация
- теории доказательства
Обобщение и абстрагирование
Обобщение и абстрагирование – два логических приема, применяемые почти всегда совместно в процессе познания. Обобщение — это мысленное выделение, фиксирование каких-нибудь общих существенных свойств, принадлежащих только данному классу предметов или отношений. Абстрагирование — это мысленное отвлечение, отделение общих, существенных свойств, выделенных в результате обобщения, от прочих несущественных или необщих свойств рассматриваемых предметов или отношений и отбрасывание (в рамках нашего изучения) последних. Обобщение и абстрагирование неизменно применяются в процессе формирования понятий, при переходе от представлений к понятиям и, вместе с индукцией, как эвристический метод. Под обобщением, понимают также переход от единичного к общему, от менее общего к более общему. Конкретизация Основана на известном правиле вывода ух Р (х) Р(а) ' называемом правилом конкретизации. Под конкретизацией понимают обратный переход — от более общего к менее общему, от общего к единичному. Если обобщение используется при формировании понятий, то конкретизация используется при описании конкретных ситуаций с помощью сформированных ранее понятий. Индукция Переход от частного к общему, от единичных фактов, установленных с помощью наблюдения и опыта, к обобщениям является закономерностью познания. Неотъемлемой логической формой такого перехода является индукция, представляющая собой метод рассуждений от частного к общему, вывод заключения из частных посылок (от лат. inductio — наведение). Обычно, когда говорят «индуктивные методы обучения», имеют в виду применение неполной индукции в обучении. Дальше, говоря «индукция», будем иметь в виду неполную индукцию. Ввиду недостоверности заключения индукция не может служить методом доказательства. Но она является мощным эвристическим методом, т. е. методом открытия новых истин. В таком качестве индукция должна широко применяться в школьном обучении в рамках методов, ориентированных на обучение учащихся деятельности по приобретению новых знаний На отдельных этапах обучения, в частности в начальной школе, обучение математике ведется преимущественно индуктивными методами. Здесь индуктивные заключения достаточно убедительны психологически и в большинстве остаются пока (на этом этапе обучения) недоказанными. Можно обнаружить лишь изолированные «дедуктивные островки», состоящие в применении несложных дедуктивных рассуждений в качестве доказательств отдельных предложений. Дедукция Дедукция (от лат. deductio — выведение) в широком смысле представляет собой форму мышления, состоящую в том, что новое предложение (а точнее, выраженная в нем мысль) выводится логическим путем, т. е. по определенным правилам логического вывода (следования) из некоторых известных предложений (мыслей). Впервые теория дедукции (логического вывода) была разработана Аристотелем. Эта теория развивалась, совершенствовалась с развитием науки логики. Особое развитие с учетом потребностей математики она получила в виде теории доказательства в математической логике. Под обучением доказательству мы понимаем обучение мыслительным процессам поиска и построения доказательства, а не воспроизведению и заучиванию готовых доказательств. В таком понимании это педагогическая задача первостепенного общеобразовательного и воспитательного значения, выходящего за рамки математического образования. Учить доказывать означает прежде всего учить рассуждать, а это одна из основных задач обучения вообще. Что же касается значимости этой задачи для усвоения математических знаний, то она соразмерна значимости доказательства в самой математике. Download 0.79 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling