Processes of applying of quantum genetic algorithm in function optimization


Download 57.19 Kb.
Pdf ko'rish
bet3/3
Sana22.06.2023
Hajmi57.19 Kb.
#1647397
1   2   3
|ψ>
Q
(t)
=
1

N
|ψ>
i
(1)
030002-2


TABLE II. The main stages of the AQGA
No
Quantum computer
1.
Creation of a superposition of all possible chromosomes
2.
Estimates the objective function using the operator F
3.
Using Grover’s algorithm
4.
Calling Oracle O
5.
Using the Grover diffusion operator
6.
Result
Therefore, all inductors are represented by only one quantum register. Thus, the entire set is represented by one
chromosome in superposition, and it is written as follows:

α
1
α
2
......α
j
β
1
β
2
.........β
j

i
c
0
|00.....00 +c
1
|00...01 +c
2
n
2
|11...01 +c
2
n
1
|11...11 >
(2)
One of the main stages of the AQGA is the relationship between the single quantum register
|x>
i
and the objective
| finness
x
>
i
function of the quantum register
|ψ>
i
|x>
i
⊗ | fitness
x
>
i
(3)
From a formal point of view, we have a quantum gate F that evaluates the real state of people (Figure 1). In 2008,
a similar idea have been used in another version of a real quantum evolution algorithm called the Quantum Genetic
Optimization Algorithm (QGOA).
FIGURE 1. Fitness quantum door.
At the second stage, the algorithm searches for maximum compatibility:
| fitness
x
>
i
max
(4)
In the late of 1990s [8], a quantum algorithm was proposed to find the maximum value between the values of N.
After applying of F operator, the reduced quantum genetic algorithm searches for the maximum value of the objective
function based on the Grover search algorithm [9]. It is one of the most popular quantum algorithms for searching a
chaotic database. The abbreviated quantum genetic algorithm performs the following two steps. Firstly, Oracle O has
been created to define all sets in a register that has a set of objective function values:
|ψ>
i
Desired value that exceeds the maximum value,
o
|ψ>
Q
(t)
= (1)
f
(x)
|ψ>
Q
(t)
(5)
030002-3


here
f
(x) =

1
,i f | fitness
x
>
i
| fitness
x
>
i
max
0
,otherwise
(6)
Secondly, the algorithm is completed using the Grover diffusion operator. This operator is used to find specified
states, i.e. f
(| fitnes
x
>
i
) = 1:
|ψ>
Q
(t)
G|ψ>
Q
(t)
(7)
Finally, the maximum number of chromosomes is obtained by performing

ψ>
Q
(t)
. All of these steps are summarized
in the quantum system shown in Figure 2.
FIGURE 2. Fitness quantum door.
CONCLUSION
In conclusion, it is important to say that, in this article, we have examined the basic concepts of quantum computing
and quantum evolution. In recent years, the ability to simulate a quantum computer has led to the emergence of new
genetic algorithms, namely quantum genetic algorithms. Currently, research in this class of algorithms is divided into
two trends. On the one hand, this allows some researchers to create a new class of genetic algorithms in quantum
mechanics. In this case, the researcher has no plans to run the algorithm on a quantum computer in the near future.
The principal goal is to solve an optimization problem in a digital computer, or to test hardware technologies in a
quantum genetic algorithm, or to solve real problems using a new class of algorithms instead of classical genetic
algorithms. Given the way we think through these algorithms, we believe this latest research could have a profound
impact on artificial intelligence and artificial life, as well as sciences like biology.
REFERENCES
1. D. T. Muxamediyeva, “Application of the theory of fuzzy sets for a qualitative analysis of mathematical models,”
Journal of Physics: Confer-
ence Series
1441, 8 (2020), doi:10.1088/1742-6596/1546/1/012091.
2. J. Huang, R. A. Berry, and M. L. Honig, “Auction-based spectrum sharing,” mobile networks and applications,” View at: Publisher Site 11,
405–418 (2006).
3. A. Narayanan and M. Moore, “Quantum-inspired genetic algorithms,”
Proceedings of the IEEE International Conference on Evolutionary
Computation
, 61—-66 (1996).
4. R. V. Meter, K. Nemoto, and W. J. Munro, “Communication links for distributed quantum computation,”
IEEE Transactions on Computers
56, 1643–1653 (2007).
5. S. Y.. Yang, F. Liu, and L. C. Jiao, “Novel genetic algorithm based on the quantum chromosome,” Journal of Xidian University 31, 76—-81
(2004).
030002-4


6. H. A. Primova, D. M. Sotvoldiyev, R. T. Raximov, and X. Bobabekova, “Computing fuzzy integral of the basis of fuzzy mesure,”
Journal of
Physics: Conference Series
1441, 7 (2020), doi:10.1088/1742-6596/1441/1/012161.
7. O. College Publications, ed., Prospective Algorithms for Quantum Evolutionary Computation, UK (QI-2008, 2008).
8. C. the maze problem into a search problem, ed., Quantum algorithm to solve a maze, 1312.4116, Ischia (Ischia, 2013).
9. I. T. E. Comput, ed., Quantum genetic optimization, IEEE (IEEE, 2008).
10. I. P. of the 28th Annual ACM Symposium on the Theory of Computing, ed., A fast quantum mechanical algorithm for database search, STOC
(USA, 1996).
030002-5

Download 57.19 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling