Программа и учебные материалы элективного курса по математике для учащихся 10-11 классов «конструкция «треугольник-окружность» иее применение в решении задач геометрии»


Треугольник и вписанная (вневписанная) окружность


Download 375.5 Kb.
bet5/18
Sana04.11.2020
Hajmi375.5 Kb.
#140885
TuriПрограмма
1   2   3   4   5   6   7   8   9   ...   18
Bog'liq
5 23

Треугольник и вписанная (вневписанная) окружность



Центр вписанной окружности лежит на пересечении биссектрис внутренних углов треугольника. Радиус этой окружности и точки касания можно определить, опустив перпендикуляр из центра на сторону. Довольно распространенной является такая ошибка: за точку касания окружности и стороны принимают точку пересечения стороны и биссектрисы.

Рассмотрим некоторые свойства вписанного треугольника.



П
усть x, y, z – отрезки, на которые точки касания вписанной окружности делят стороны треугольника. Эти отрезки можно выразить через стороны треугольника, решив следующую систему уравнений:

Получим:




Download 375.5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   18




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling