R- функция усули (rfm)да шаклларни чизиш дастурлари
Download 119.74 Kb.
|
Maruza №11
ФАН: Фракталлар назарияси ва фрактал графикаЎқитувчи: техника фанлари доктори, АВТ кафедраси профессори Шаҳзода Анарова Аманбаевна R- функция усули (RFM)да шаклларничизиш дастурлариРежа:
Function Krug(x,y:real):boolean;const RR=1.0;BeginKrug:=false;Krug:=(SQR(RR)-SQR(X)-SQR(Y))>=0;End;Function TURT(x,y:real):boolean;var p1,p2:boolean; a,b:real;beginb:=1; a:=2*b; TURT:=false;p1:=sqr(a)-sqr(x)>=0; p2:=sqr(b)-sqr(y)>=0;TURT:=(p1 and p2);End;Function vosmVirez(x,y:real):boolean;var f1,f2,f3,f4,f5,f6,f7,f8,f9:boolean; a,alfa,r1,r2:real;beginvosmVirez:=false;alfa:=pi/8; r1:=1; r2:=2*r1*sin(alfa/2); a:=r1/sqrt(2);f1:=sqr(r1)-sqr(x)-sqr(y)>=0; f2:=sqr(x-r1)+sqr(y)-sqr(r2)>=0;f3:=sqr(x+r1)+sqr(y)-sqr(r2)>=0; f4:=sqr(x)+sqr(y-r1)-sqr(r2)>=0;f5:=sqr(x)+sqr(y+r1)-sqr(r2)>=0; f6:=sqr(x-a)+sqr(y-a)-sqr(r2)>=0;f7:=sqr(x+a)+sqr(y+a)-sqr(r2)>=0; f8:=sqr(x+a)+sqr(y-a)-sqr(r2)>=0;f9:=sqr(x-a)+sqr(y+a)-sqr(r2)>=0;vosmVirez:= f1 and (((f2 and f3) and (f4 and f5)) and ((f6 and f7) and (f8 and f9)));End;Function tavr(x,y:real):boolean;const a0=0.1; b0=0.1; a1=0.4; b1=0.6; y0=0.5;var f1,f2,f3,f4 {,w1,w2,w}:boolean;begintavr:=false;f1:=sqr(a1)-sqr(x)>=0; f2:=sqr(b0)-sqr(y-y0)>=0;(* w1:=f1 and f2;*)f3:=sqr(a0)-sqr(x)>=0; f4:=sqr(b1)-sqr(y)>=0;( *w2:=f3 and f4; w:=w1 or w2 ;*)(*w*) tavr:=(f1 and f2) or (f3 and f4);End;Function Qo’shtavr(x,y:real):boolean;const a0=0.1;b0=0.1{6};a1=0.4;b1=0.6{1};y0=0.5;var f1,f2,f3,f4,f5,f6:boolean; x0:real;beginQo’shtavr:=false;f1:=sqr(a1)-sqr(x)>=0; f2:=sqr(b0{1})-sqr(y-y0)>=0;f3:=sqr(a0)-sqr(x)>=0; f4:=sqr(b1{a1}{0})-sqr(y)>=0;f5:=sqr(a1)-sqr(x)>=0; f6:=sqr(b0{1})-sqr(y+y0)>=0;Qo’shtavr:=((f1 and f2) or (f3 and f4) or (f5 and f6));End;Function zetavr (x,y:real):boolean;const a0=0.1;b0=0.1;a1=0.4;b1=0.6; x1=0.1;y1=0.1;x2=0.1;y2=0.1;var f1,f2,f3,f4,f5,f6:boolean; x0:real;beginzetavr:=false;f1:=(sqr(a0)-sqr(x))>=0; f2:=(sqr(b1)-sqr(y))>=0;(*f1:=(sqr(0.25{a1})-sqr(x+0.15{x1}))>=0;f2:=(sqr(0.1{b1})-sqr(y-0.5{y1}))>=0;*)f3:=(a1+x)*(a0-x)>=0; f4:=(b1-y)*(y-a1)>=0;(* f1:=(sqr(a1)-sqr(x-x2))>=0; f2:=(sqr(b1)-sqr(y+y2))>=0;*)f5:=(a0+x)*(a1-x)>=0; f6:=-(a1+y)*(b1+y)>=0;zetavr:=((f1 and f2) or (f3 and f4)) or (f5 and f6);End;Function ugl(x,y:real):boolean;consta0=0.1;b0=0.5;a1=0.4;b1=0.1;y0=0.5; var f1,f2,f3,f4,f5,f6:boolean; x0:real;beginugl:=false;f1:=sqr(a0)-sqr(x)>=0; f2:=sqr(b0)-sqr(y)>=0;f3:=(a0+(-x))*(a1-(-x))>=0; f4:=(b0+y)*(b1-y)>=0;ugl:=(f1 or f2) and (f3 and f4);(* f3:=b1-y>=0; f4:=b0+y>=0; f5:=a1-(-x)>=0;f6:=a0+(-x)>=0;ugl:=(f1 or f2) and ((f3 and f4) and (f5 and f6));*)End;Function varo(x,y:real):boolean;var f1,f2,f3,f4,f5,f6,f7, f8,f9,f10,w1,w2,w3,w4,w5,w:boolean; a,b,a1,b1,c,d:real;begina:=1.0; b:=0.20; {max 0.9} a1:=a/10; b1:=b/10; c:=a+a1; d:=b+b1; varo:=false;f1:=(sqr(b*c)-sqr(a1*y+b*x))>=0; f2:=(sqr(a*d)-sqr(a*y-b1*x))>=0;f3:=-x>=0; f4:=b-y>=0; f5:=y>=0; f6:=a-x>=0;f7:=x>=0; f8:=y+b>=0; f9:=-y>=0; f10:=x+a>=0;w1:= (f1 and f2);{kvadrat} w2:= (f3 or f4);{verh treug}w3:= (f5 or f6);{prav treug} w4:= (f7 or f8);{nign treug}w5:= (f9 or f10);{lev treug}w:=(((w1 and w2) and w3) and w4) and w5;varo:=w;end;{varo}y z b -b -a a a2 b2 c=a+a2 d=b+b2 Function vara(x,y:real):boolean;var f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,fa,w1,w2,w3,w4,w5,w:boolean;a,b,a1,b1,c,d,r:real;begina:=1.020; b:=0.2020; {max 0.9} a1:=a/10; b1:=b/10; c:=a+a1; d:=b+b1; r:=sqrt(sqr(a)+sqr(b))/10{b/10.0};vara:=false;f1:=(sqr(b*c)-sqr(a1*y+b*x))>=0; f2:=(sqr(a*d)-sqr(a*y-b1*x))>=0;fa:=(sqr(x)+sqr(y)-sqr(r))>=0; f3:=-x>=0; f4:=b-y>=0; f5:=y>=0; f6:=a-x>=0;f7:=x>=0; f8:=y+b>=0; f9:=-y>=0; f10:=x+a>=0;w1:= (f1 and f2);{kvadrat} w2:= (f3 or f4);{verh treug}w3:= (f5 or f6);{prav treug} w4:= (f7 or f8);{nign treug}w5:= (f9 or f10);{lev treug}w:=((((w1 and w2) and w3) and w4) and w5 and fa);vara:=w; end;{vara}z -b -a Function vare(x,y:real):boolean;var f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,fe,w1,w2,w3,w4,w5,w:boolean; a0,b0,a,b,a1,b1,c,d:real;begina:=1.0; b:=1.0; {max 0.9} a0:=b/5.0; b0:=b/10.0; a1:=a/10; b1:=b/10; c:=a+a1; d:=b+b1;vare:=false;f1:=(sqr(b*c)-sqr(a1*y+b*x))>=0; f2:=(sqr(a*d)-sqr(a*y-b1*x))>=0;fe:=sqr(x/a0)+sqr(y/b0)-1>=0; f3:=-x>=0; f4:=b-y>=0; f5:=y>=0;f6:=a-x>=0; f7:=x>=0; f8:=y+b>=0; f9:=-y>=0; f10:=x+a>=0;w1:= (f1 and f2);{kvadrat} w2:= (f3 or f4);{verh treug}w3:= (f5 or f6);{prav treug} w4:= (f7 or f8);{nign treug}w5:= (f9 or f10);{lev treug}w:=((((w1 and w2) and w3) and w4) and w5 and fe);vare:=w; end;{vare}z -b -a a Function vart(x,y:real):boolean;var f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,fk,fkk,w0,w1,w2,w3,w4,w5,w:boolean; a0,b0,a,b,a1,b1,c,d:real;begina:=0.90; b:=0.90;{max 0.9} a0:=a/10.0; b0:=b/10.0; a1:=a/10; b1:=b/10;c:=a+a1; d:=b+b1; vart:=false;f1:=(sqr(b*c)-sqr(a1*y+b*x))>=0; f2:=(sqr(a*d)-sqr(a*y-b1*x))>=0;fk:=sqr(x)-sqr(a0)>=0; fkk:=sqr(y)-sqr(b0)>=0;f3:=-x>=0; f4:=b-y>=0; f5:=y>=0; f6:=a-x>=0;f7:=x>=0; f8:=y+b>=0; f9:=-y>=0; f10:=x+a>=0;w0:= (fk or fkk); {ich kv} w1:= (f1 and f2);{kvadrat}w2:= (f3 or f4);{verh treug} w3:= (f5 or f6);{prav treug}w4:= (f7 or f8);{nign treug} w5:= (f9 or f10);{lev treug}w:=((((w1 and w2) and w3) and w4) and w5 and w0);vart:=w; end;{vart}z -b -a a function Mnogug;var xi,yi:arr; fi:array[1..6] of boolean; i:integer;beginxi[1]:=1.0;xi[2]:=0.0;xi[3]:=-1.0;xi[4]:=-1.0;xi[5]:=0.0;xi[6]:=1.0;xi[7]:=1.0;yi[1]:=0.5;yi[2]:=1.0;yi[3]:=0.5;yi[4]:=-0.5;yi[5]:=-1.0;yi[6]:=-0.5;yi[7]:=0.5;for i:=1 to 6 dofi[i]:=-x*(yi[i+1]-yi[i])+y*(xi[i+1]-xi[i])+xi[i]*yi[i+1]-xi[i+1]*yi[i]>=0;mnogug:=(fi[1] and fi[2] and fi[3] and fi[4] and fi[5] and fi[6]);end;Function TAQA(x,y:real):boolean;var p1,p2,p3:boolean;r1,r2:real;beginr1:=1.0;r2:=0.5;taqa:=false; p1:=sqr(r1)-sqr(x)-sqr(y)>=0;p2:=sqr(x)+sqr(y)-sqr(r2)>=0; p3:=y>0;taqa:=(p1 and p2) and p3;End;Function KOLSO(x,y:real):boolean;var p1,p2:boolean; r1,r2:real;beginr1:=Radius1;r2:=Radius2;kolso:=false;p1:=sqr(r1)-sqr(x)-sqr(y)>=0; p2:=sqr(x)+sqr(y)-sqr(r2)>=0;kolso:=p1 and p2End;Function krest1(x,y:real):boolean;var r1,r2:real;w1,w2,w3,w4,w5,w6,w7,w8,w9:boolean;begin r1:=0.75;r2:=0.35;krest11:=false;w1:=(sqr(r1)-sqr(x)-sqr(y))/(2*r1)>=0; w2:=(sqr(r2)-sqr(x-r1)-sqr(y))/(2*r2)<=0;w3:=(sqr(r2)-sqr(x+r1)-sqr(y))/(2*r2)<=0; w4:=(sqr(r2)-sqr(x)-sqr(y-r1))/(2*r2)<=0;w5:=(sqr(r2)-sqr(x)-sqr(y+r1))/(2*r2)<=0;w6:=(sqr(r2)-sqr(x-sqrt(2)/2*r1)-sqr(y-sqrt(2)/2*r1))/(2*r2)<=0;w7:=(sqr(r2)-sqr(x+sqrt(2)/2*r1)-sqr(y-sqrt(2)/2*r1))/(2*r2)<=0;w8:=(sqr(r2)-sqr(x+sqrt(2)/2*r1)-sqr(y+sqrt(2)/2*r1))/(2*r2)<=0;w9:=(sqr(r2)-sqr(x-sqrt(2)/2*r1)-sqr(y+sqrt(2)/2*r1))/(2*r2)<=0;krest1:=w1 and ( w2 or w4 or w3 or w5) and (w6 and w7 and w8 and w9);end;{krest}Function shest( x,y:real):boolean;var r1,r2:real;w1,w2,w3,w4,w5,w6,w7,w8,w9:boolean;begin r1:=1;r2:=0.3;shest:=false;w1:=(sqr(r1)-sqr(x)-sqr(y))/(2*r1)>=0; w2:=(sqr(r2)-sqr(x-r1)-sqr(y))/(2*r2)<=0;w3:=(sqr(r2)-sqr(x+r1)-sqr(y))/(2*r2)<=0; w4:=(sqr(r2)-sqr(x)-sqr(y-r1))/(2*r2)<=0;w5:=(sqr(r2)-sqr(x)-sqr(y+r1))/(2*r2)<=0;w6:=(sqr(r2)-sqr(x-sqrt(2)/2*r1)-sqr(y-sqrt(2)/2*r1))/(2*r2)<=0;w7:=(sqr(r2)-sqr(x+sqrt(2)/2*r1)-sqr(y-sqrt(2)/2*r1))/(2*r2)<=0;w8:=(sqr(r2)-sqr(x+sqrt(2)/2*r1)-sqr(y+sqrt(2)/2*r1))/(2*r2)<=0;w9:=(sqr(r2)-sqr(x-sqrt(2)/2*r1)-sqr(y+sqrt(2)/2*r1))/(2*r2)<=0;shest:=w1 and ( w2 and w4 and w3 and w5) and (w6and w7 and w8 and w9);end;{krest}function fig8( x,y:real):boolean;{vosmigrannic}var xi,yi:arr17;f1,f2,f3,f4:boolean; i:integer; a:real;begina:=1/sqrt(2);f1:=(sqr(a)-sqr(x)){/(2*a)}>=0; f2:=(sqr(a)-sqr(y)){/(2*a)}>=0;f3:=(1-sqr(x+y)){/(2*a)}>=0; f4:=(1-sqr(x-y)){/(2*a)}>=0;fig8:=((f1 and f2) or (f3 and f4));end;Эътиборингиз учун рахмат!!!!! Download 119.74 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling