«Разработка программного обеспечения по расчёту тепловых процессов пиролизной установки»
ГЛАВА 2. ТЕОРИЯ И РАСЧЁТ ТЕПЛОВЫХ ПРОЦЕССОВ ПРОТЕКАЮЩИХ В ПИРОЛИЗНЫХ УСТАНОВОК
Download 1.18 Mb.
|
diplom Raxmanova
ГЛАВА 2. ТЕОРИЯ И РАСЧЁТ ТЕПЛОВЫХ ПРОЦЕССОВ ПРОТЕКАЮЩИХ В ПИРОЛИЗНЫХ УСТАНОВОК.
2.1. Теория и расчёт температурного поля трубчатого реактора пиролизной установоки. Явление теплопроводности в веществах представляет собой процесс распространения тепловой энергии при непосредственном Кулоновском (электромагнитном) взаимодействии отдельных частиц тела, имеющих различные температуры (кинетические энергии). Теплопроводность обусловлена обменом энергией между микрочастицами вещества. При этом в газах перенос энергии осуществляется за счет диффузии молекул (атомов) и обмена между ними энергией при столкновениях. В жидкостях и диэлекфиках тепловая энергия (энергия колебаний атомов) переносится при распространении упругих волн. В металлах перенос энергии в основном осуществляется путем обмена энергией между свободными электронами и передачи энергии от свободных электронов атомам решетки, роль упругих колебаний кристаллической решетки здесь имеет второстепенное значение. Аналитическая теория теплопроводности игнорирует молекулярное строение вещества и рассматривает вещество как сплошную среду. Такой подход правомерен, если размеры объектов исследования достаточно велики ио сравнению с размерами молекул и расстоянием между ними. Следует указать, что в жидкостях и газах чистая теплопроводность может быт ь реализована при выполнении условий, исключающих перенос тепла конвекцией. Всякое физическое явление в общем случае сопровождается изменением в пространстве и времени существенных для данного явления физических величин. Процесс теплопроводности, как и другие виды теплообмена, может иметь место только при условии, что в различных точках тела (или системы тел) температура неодинакова. В общем случае процесс передачи тепла теплопроводностью в твердом теле сопровождается изменением температуры как в просфанстве, так и во времени. t c1(внутренний температура) мы используем эту формулу для расчета: t c1= ; t c2(внешний температура)мы используем эту формулу для расчета: t c2= ;; 3)
Где t(r)- температурного поля; tc1-внутренний температура; t c2-внешний температура ; r-средний радус; r1- внутренний радус; r2- внешний радус; 2.2.Расчёт теплового баланса трубчатого реактора для пиролиза биомассы. Современное развитие мировой экономики неразрывно связано с возрастанием производства электрической и тепловой энергии. Однако в крупных тепловых электростанциях производство энергии сопровождается огромными потерями и расходами природного органического топлива. Сегодня в Узбекистане одним из приоритетных направлений энергетической политики является развитие альтернативной энергетики и энергосбережение во всех сферах экономики страны [ 1). Одним из классических возобновляемых источников энергии является биомасса. Применение биомассы в натуральном твердом виде связано с рядом проблем, основными из которых являются экология и недостаточная эффективность преобразования и использования энергии сырья. Предварительная термическая переработка биомассы в жидкую и газообразную формы представляется наиболее перспективной. Выработанное из биомассы жидкое и газообразное топливо более универсально, экологически приемлемо и имеет большое энергосодержание по сравнению с исходным сырьем (растительные отходы, навоз и другие виды биомассы). Термохимические технологии получения твердого, жидкого и газообразного топлива из различных видов биомассы включают в себя следующие процессы: прямое сжигание, пиролиз, газификацию, синтез. Среди современных термохимических технологий энергетического использования биомассы пиролиз является наиболее универсальной, которая позволяет получать качественное, экологически безопасное твердое, жидкое и газообразное альтернативное топливо практически из любого сырья. При этом энергетические затраты на обеспечение термохимического процесса обычно не превышают 5-10% от получаемых энергетических продуктов. Нами создана и экспериментально исследована пиролизная установка для термической переработки биомассы и местных органических отходов с/х производства [2,3]. Принципиальная схема пиролизной установки представлена ня пис. 1. Рис.2.1.1 Принципиальная тепловая схема пиролизной установки для термической переработки биомассы: БР — биореактор; ПСК — параболацилиндрический концентратор; К — конденсатор; ЖТ — жидкое альтернативное топливо; Г — газгольдер. В процессе проектирования пиролизных установок ключевое значение имеет расчет теплового баланса биореактора в целях определения расход тепловой энергии на переработки биомассы. Для термической переработки биомассы в реакторе требуется определенный расход тепловой энергии. Тепловая энергия подведенная поддерживает температурный режим переработки биомассы. Для оценки энергоемкости переработки биомассы необходимо исследовать теп ловой баланс реактора. На основе математического моделирования теплового баланса реактора решаются важные задачи энергосбережения и оптимизации реакторов биоэнергетических установок. При работе биореактора часть тепло выделяемого при сжигании топлива, безвозвратно теряется в окружающей среде. Соотношения между полным поступлением тепла в биореактор, полезно использованным теплом в нем и тепловыми потерями выражаются тепловым балансом реактора. Уравнение теплового баланса для трубчатой (цилиндрической формы) биореактора имеет следующий вид: Рис.2.2.2 . Рис.2.2.3 Эксергетическая диаграмма . Таблица 2.2.1. Эксергетический баланс биореактора пиролизной установки
Тепловые потери в биореакторе определяются разностью между температурой перерабатываемой биомассы и наружной температурой поверхностей реактора, площадью поверхностей контакта биомассы и наружного воздуха, коэффициентом теплопроводности материала стенки реактора, коэффициентом теплоотдачи поверхности контакта между средами, толщиной слоев стенок. Количество теплоты, теряемой биомассы в результате теплоотдачи через стенку реактора в окружающую среду, кДж Пользуясь выражением (13), можно рассчитать потери теплоты теплоотдачей любым элементом поверхности реактора. Следовательно, общая потребность в теплоте для установки определяется главным образом затратами на подогрев биомассы до температуры пиролиза. Потребность в теплоте для компенсации потерь, вызванных теплоотдачей, можно снизить, применив соответствующую теплоизоляцию. Источником теплоты для пиролизной установки служить собственный биогаз (пиролизный газ). Для экономии энергии и биогаза нужно стремиться к тому, чтобы экскременты животных по пути к реактору меньше охлаждались (для этого путь должен быть короче, а еще лучше, если реактор находится внутри животноводческой фермы), а трубопроводы были хорошо теплоизолированы. Для покрытия тепловых потребностей пиролизных установок можно использовать энергию солнца с применением параболацилиндрических концентраторов. Упрощенный расчет теплового баланса биореактора с различной загрузкой массой биомассы (навоз) производим по следующей последовательности. Таблица 2.2.2 Расчет теплового баланса реактора. Download 1.18 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling