Referat Elementlar hodisalar fazosi hodisalar ustida amallar ehtimolning tariflari Reja


Download 129.19 Kb.
bet4/5
Sana11.11.2023
Hajmi129.19 Kb.
#1765574
TuriReferat
1   2   3   4   5
Bog'liq
Elementlar hodisalar fazosi hodisalar ustida amallar ehtimolning (2)

Ehtimollikning klassik ta’rifi


chekli n ta teng imkoniyatli elementar hodisalardan tashkil topgan bo‘lsin.

(1.6.1)

Klassik ta’rifdan foydalanib, ehtimollik hisoblashda kombinatorika elementlaridan foydalaniladi. Shuning uchun kombinatorikaning ba’zi elementlari keltiramiz. Kombinatirikada qo‘shish va ko‘paytirish qoidasi deb ataluvchi ikki muhim qoida mavjud.


va chekli to‘plamlar berilgan bo‘lsin.

  • Qo‘shish qoidasi: agar to‘plam elementlari soni n va to‘plam elementlari soni m bo‘lib, ( va to‘plamlar kesishmaydigan) bo‘lsa, u holda to‘plam elementlari soni n+m bo‘ladi.

  • Ko‘paytirish qoidasi: va to‘plamlardan tuzilgan barcha juftliklar to‘plami ning elementlari soni nm bo‘ladi.

n ta elementdan m ( )tadan tanlashda ikkita sxema mavjud: qaytarilmaydigan va qaytariladigan tanlashlar. Birinchi sxemada olingan elementlar qayta olinmaydi(orqaga qaytarilmaydi), ikkinchi sxemada esa har bir olingan element har qadamda o‘rniga qaytariladi.

Qaytarilmaydigan tanlashlar sxemasi



  • Guruhlashlar soni: n ta elementdan m ( )tadan guruhlashlar soni quyidagi formula orqali hisoblanadi:



(1.6.2)


sonlar Nyuton binomi formulasining koeffisientlaridir:


.



  • O‘rinlashtirishlar soni: n ta elementdan m ( ) tadan o‘rinlashtirishlar soni quyidagi formula orqali hisoblanadi:



. (1.6.3)



  • O‘rin almashtirishlar soni: n ta elementdan n tadan o‘rinlashtirish o‘rin almashtirish deyiladi va u quyidagicha hisoblanadi:



. (1.6.4)
O‘rin almashtirish o‘rinlashtirishning xususiy holidir, chunki agar (1.6.3.)da n=m bo‘lsa bo‘ladi.

Qaytariladigan tanlashlar sxemasi



  • Qaytariladigan guruhlashlar soni: n ta elementdan m ( ) tadan qaytariladigan guruhlashlar soni quyidagi formula orqali hisoblanadi:



(1.6.5)



  • Qaytariladigan o‘rinlashtirishlar soni: n ta elementdan m ( ) tadan qaytariladigan o‘rinlashtirishlari soni quyidagi formula orqali hisoblanadi:

. (1.6.6)



  • Qaytariladigan o‘rin almashtirishlar soni: k hil n ta elementdan iborat to‘plamda 1-element n1 marta, 2-element n2 marta,…, k- element nk marta qaytarilsin va bo‘lsin, u holda n ta elementdan iborat o‘rin almashtirish orqali belgilanadi va u quyidagicha hisoblanadi:

. (1.6.4)

(1.4.10) ga asosan,


.

Download 129.19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling