Реферат по литологии написанным студентом 2-курса (заочный) тема: ядерный магнитный резонанс
Общая теория ядерного магнитного резонанса
Download 0.76 Mb.
|
48 XAMIDOV S.A
3.Общая теория ядерного магнитного резонанса.
3.1.Классическое описание условий магнитного резонанса. Вращающийся заряд q можно рассматривать как кольцевой ток, поэтому он ведет себя как магнитный диполь, величина момента равна: =iS, (3.1) где i-сила эквивалентного тока; S - площадь, охватываемая кольцевым током. В соответствии с понятием силы тока имеем: i=qn, где n=v/2r-число оборотов заряда q в секунду; v-линейная скорость; r-радиус окружности, по которой движется заряд. Если перейти к электромагнитным единицам (т.е. разделить заряд на с) и учесть, что S=r2, то выражение (3.1) можно переписать в следующем виде: =qvr/2c. (3.2) Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса) L, представляющим собой вектор, направленный вдоль оси вращения и имеющий величину Mvr. Здесь L=[rp]= [rv], в данном случае rv. И заряд, и масса участвуют в одном и том же вращении (вращательном движении), поэтому вектор магнитного момента коллинеарен вектору углового момента, с которым он связан соотношением =(q/2Mc)L=L, (3.3) где =q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра). Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах. Выражение 3.3 позволяет записать классическое уравнение движения магнитного момента в векторной форме следующим образом: d /dt=[ ], (3.4) где –напряженность внешнего магнитного поля. Если в отсутствии магнитного поля вращать вектор с угловой скоростью , то, в соответствии с законом Ньютона для вращательного движения, выражение для d /dt будет иметь вид: d /dt=[ ]. (3.5) Из сопоставления выражений 3.4 и 3.5 следует, что действие магнитного поля в точности эквивалентно вращению момента с угловой скоростью =- (3.6), т.е. ω=, или =/2 (3.7), здесь [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]). Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора с постоянной угловой скоростью - независимо от направления вектора , т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 3.6 – формулой Лармора. Если перейти к системе координат, вращающейся равномерно с угловой скоростью - , то при отсутствии других магнитных полей вектор магнитного момента в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует. Рис.1. Прецессия магнитного момента в магнитном поле Допустим теперь, что кроме поля введено другое, более слабое поле 1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению (рис.1). Если скорость вращения поля 1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [ 1], который стремится повернуть ядерный момент в плоскость, перпендикулярную . Если направление 1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента. Если, однако, само поле 1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента , т.е. большие изменения угла между и 0. При изменении угловой скорости вращения поля 1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса. Аналогичное явление резонанса должно наблюдаться, когда направление поля 1 фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс. Рис.2. Разложение вектора магнитного поля на два вектора, вращающиеся в противоположные стороны. На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю 0 и направлена вдоль оси х, пропускают переменный ток. Напряжение с частотой , приложенное к катушке, создает поле, эквивалентное двум вращающимся в противоположных направлениях полям величиной (Н1cos t+H1sin t) и (H1cos t – H1sin t). Если соответствует частоте резонанса, магнитный диполь поглощает энергию поля, создаваемого катушкой, вследствие чего вектор магнитного момента отклоняется в направлении к плоскости ху и во второй (приемной) катушке, расположенной вдоль оси у, наводится э.д.с. Т.о., рассмотренная здесь классическая модель резонанса, объясняя суть явления, указывает и на экспериментальное его проявление, состоящее в непрерывном поглощении электромагнитной энергии поля Н1. Download 0.76 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling