Referat qarshi 2010. Yuqori tartibli hosilalar va ularning tatbiqlari. Reja


Download 75.22 Kb.
bet2/2
Sana16.04.2023
Hajmi75.22 Kb.
#1358851
TuriReferat
1   2


(7)


x  2

1 1


x  3

Endi
x  2 va

1




x  3
funksiyalarning n-tartibli hosilalarini topishimiz lozim. Buning

uchun u=


x a
funksiyaning n-tartibli hosilasini bilish yyetarli. Bu funksiyani u=(x+a)-1

ko‘rinishda yozib, ketma-ket hosilalarni hisoblaymiz. U holda

- 6 -


u’=-(x+a)-2, u’’=2(x+a)-3, u’’’=-23(x+a)-3=-6(x+a)-4.
Matematik induksiya metodi bilan
u(n)=(-1)nn!(x+a)-n-1 (8) Shunday qilib, (8.7) va (8.8) tengliklardan foydalanib quyidagi


(n) n -n-1 n -n-1 n

9

7
 


y =-7(-1) n!(x-2) +9(-1) n!(x-3) =(-1) n!

natijaga erishamiz.
( x  3 )n


      1. Leybnits formulasi.


( x  2 )n

Agar u(x) va v(x) funksiyalar n-tartibli hosilalarga ega bo‘lsa, u holda bu ikki funksiya ko‘paytmasining n -tartibli hosilasi uchun
( uv )( n ) u( n )v Cn' u( n1)v' C2u( n2 )v'' ...Cku( nk )v( k ) ...

n

n
+ C n1u' v( n1 ) uv( n )
n

(9)





n
formula o‘rinli bo‘ladi. Bunda Ck
n( n  1)...(n k  1)
 .
k!

Isboti. Matematik induksiya usulini qo‘llaymiz. Ma’lumki,
(uv)’=u’v+uv’. Bu esa n=1 bo‘lganda (9) formulaning to‘g‘riligini ko‘rsatadi. Shuning uchun
(9) formulani ixtiyoriy n uchun o‘rinli deb olib, uning n+1 uchun ham to‘g‘riligini ko‘rsatamiz.
(9) ni differensiyalaymiz:

n

n
( uv )n1u( n1)v u( n )v' C'n u( n )v' Cn' u( n1)v' ' C 2u( n1)v' ' C 2u( n2 )v' ' '
... Cku( n k 1 )v( k ) Cku( n k )v( k 1 ) ... Cn 1u'' v( n 1 ) Cn 1u' v( n )

n n
+ u' v( n ) uv( n1 )
Ushbu
n n

(10)


1 C
'  1 n C'
C ' C 2 n n( n 1) ( n 1)n C 2 ,



n n 1, n n
2 2 n 1

Ck 1 Ck
n( n 1)...(n  2  k ) n( n 1)...(n k 1)

n n ( k 1)! k!



C
( n 1)n...(n 1 ( k 1))
=

k!




k n1

tengliklardan foydalanib, (10) ni quyidagicha yozamiz:

( uv )n1 u( n1 )v C1
u( n )v'C 2
u( n1)v'' ...Ck
un1k v( k ) ... uv( n1 )

n1
n1
n1

Demak, (9) formula n+1 uchun ham o‘rinli ekan. Isbot etilgan (9) formula Leybnits formulasi deb ataladi.

- 7 -


      1. Leybnits formulasi tatbiqlari.

Misol. y=x3ex ning 20-tartibli hosilasi topilsin.
Yechish. u=ex va v=x3 deb olsak, Leybnits formulasiga ko‘ra

y( 20 ) x3( ex )( 20 ) C1
( x3 )'( ex )(19) C 2 ( x3 )'' ( ex )(18) C3 ( x3 )''' ( ex )(17)

20 20 20


20
C 4 ( x3 )( 4 )( ex )16...( x3 )( 20) ex
bo‘ladi. (x3)’=3x2, (x3)’’=6x, (x3)’’’=6, (x3)(4)=0

tengliklarni va y=x3 funksiyaning hamma keyingi hosilalarining 0 ga tengligini, shuningdek n
uchun (ex)(n)=ex ekanligini e’tiborga olsak,

y( 20) ex( x3  3C1 x2  6C 2 x  6C3
) tenglik hosil bo‘ladi.

20 20 20
Endi koeffitsientlarni hisoblaymiz:

C1  20,

C 220 19  190,


C3 20 19 18 20 19 18 1140

20

Demak,
20 2


20 3! 6

y( 20) ex( x3  60x2 1140x  6840 ).
  1. Xulosa.





  1. Yuqori tartibli hosilalar tushunchasi o’rganildi.

  2. Leybnits formulasi yordamida konkret misollar yechildi.

  3. Ikkinchi tartibli xosilaning mexanik ma’nosi misollar yordamida tushuntirildi.



MUNDARIJA.

    1. Reja 2

    2. Kirish 3

    3. Asosiy qism 5

    4. Xulosa 9

    5. Foydalanilgan adabiyotlar 11




Foydalanilgan adabiyotlar.



  1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O‘zbekiston». 1 t: 2005, 2 t . 1995




  1. Fixtengols G. M. „Kurs differensialnogo i integralnogo ischeleniya“ M.: 1970.




  1. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T.,

«O‘zbekiston». 1-q. 1993., 2-q. 1995.





  1. Demidovich B. P. “Sbornik zadach i uprajneni po matematicheskomu analizu” T.: 1972.




  1. Ilin V. A., Poznyak E. G. “Maematik analiz asoslari” I qism, T.: 1981.

Download 75.22 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling