Reja: Quyosh haqida umumiy ma'lumot


Download 37.88 Kb.
Sana20.12.2022
Hajmi37.88 Kb.
#1035736
Bog'liq
Quyosh


Quyosh
Reja:


1. Quyosh haqida umumiy ma'lumot
2. Quyoshning o'ziga xos
3. Quyosh

Quyosh — Quyosh tizimining markaziy jismi, qizigan plazma shari. Quyosh Yerga eng yaqin G2 sinfiga mansub sariq mitti yulduz. Massasi 1,990×1030 kg (Yernikidan 332958 marta koʻp). Quyoshda Quyosh tizimi massasining 99,866 foizi jamuljam. Yerdan Quyoshgacha masofa 1,4710×1011 m dan (yanvar) 1,5210×1011 m gacha (iyul) boʻlib, oʻrtacha 1,4960×1011 m ni tashkil etadi (astronomik birlik). Quyosh diametri 1,392×1011 9 m (Yer ekvatori diametridan 109 marta koʻp). Oʻrtacha zichligi 1,41×1011 kg/m3. Quyosh sirtida erkin tushish tezlanishi 273,98 m/s kvadrat, parabolik tezlik (ikkinchi kosmik tezlik) esa 6,18×105 m/s. Sirtidagi harorat 5770 K. Quyosh sistemasidagi sayyoralar soni 8 ta. Astronomik belgisi fi ☉.


Quyosh — quyosh sistemasining markaziy jismi; Yerga eng yaqin joylashgan yulduz.Unda sistemaning 99,866 % massasi (Mo=1,99T033g) joylashgan. Quyosh qizigan plazmali shardan iborat, radiusi Ko=696000 km. U massasi boʻiicha Yerdan 332958, diametri boʻyicha 109 marta katta. Oʻrtacha zichligi 1,41T03 kg/m³. Yer Quyosh atrofida oʻrtacha 29,5 km/sek tezlik bilan choʻziq boʻlmagan el-lipsoid orbita boʻylab harakatlanadi. Yerning Quyoshdan oʻrtacha uzoqligi 149597870 ±1,6 km (astronomik birlik); perigeliyda afeliyga qaraganda 5 mln. km kamroq. Quyosh sirtidagi tortilish kuchi tezlanishi 273,98 m/sek2. Quyosh sirtidagi effektiv temperatura, uning toʻla nurlanishi boʻyicha 5770 K ga teng. Yerni oʻz orbitasida ushlab turuvchi kuch 3,6T021kg. Quyosh oʻlchamlariga koʻra oʻrtacha sariq yulduz boʻlib, spektr yorqinlik Gersshprung — Ressel diagrammasining oʻrta qismidan oʻrin oladi. Quyoshning spektral sinfi S2U.
Quyosh Galaktikamizspiraltarmoqlaridan birida, Galaktika markazidan 10 kps (kiloparsek) masofada joylashgan (qarang Parsek). Quyosh Galaktika markazi atrofida 200 mln. yil davomida bir marta aylanib chiqadi. Yaqin yulduzlarga nisbatan Quyosh sekundiga 20 km tezlik bilan harakat qiladi. Quyoshning yoshi 5T09yil.

Quyosh optik va radioteleskoplar yordamida tekshiriladi. Kosmosga uchishlar Quyoshning Yer atmosferasi oʻtkazmaydigan qisqa toʻlqinli va korpuskulyar nurlanishini ham tekshirishga yoʻl ochib berdi.


1611-yilda G. Galiley teleskop yordamida Quyoshni birinchi bor kuzatib, Kuyosh dogʻlari va oʻz oʻqi atrofida aylanish davrini aniqtagan. Nemis astronomi G. Shvabe esa 1843-yilda Quyosh oʻzgarishining soni yoki Quyosh faolligi davriy oʻzgarishini topdi, 1814-yilda Y. Fra-ungofer Quyosh spektrida yutilish chiziqlarini, 1859-yilda nemis olimlari Kirxgof bilan Bunzen bu chiziqlar Quyoshning tashqi qatlamlarida, uning atmosferasida paydo boʻlishini kashf etdi. Bu Quyoshning kimyoviy tarkibini, fizik tabiatini tekshirishda muhim rol oʻynadi. 1913-yilda amerikalik astronom J. Xeyl Quyosh dogʻlari Quyosh sirtining sovigan qismlari ekanligini va fraungofer chiziqlarining zeyemancha ajralishidan Quyosh sirtida kuchli magnit maydonlari borligini kashf etdi (qarang Quyosh magnetizmi). 1940-yillar boshida Quyosh radiotoʻlqinlar manbai ekanligi aniqchandi. 1942-yilda shved olimi B. Edlen va boshqa olimlar Quyosh toji spektridagi bir necha spektral chiziqni koʻp marta ionlangan kimyoviy elementlarning spektral chiziqlari ekanini aniqladi, shu bilan Quyosh tojining yuqori temperaturaga egaligini kashf etdi. XX asrning yarmida magnit gidrodinamika va plazma fizikasining rivojlanishi Quyosh fizikasining rivojlanishiga muhim turtki boʻldi. Kosmik eraning boshlanishidan soʻng Quyoshning ultrabinafsha va rentgen nurlanishi raketalar, Yer sunʼiy yoʻldoshlariga oʻrnatilgan avtomatik orbital rasadxonalar, bortida kosmonavtlar boʻlgan kosmik lab. lar yordamida oʻrganilmoqsa. Qrim, Pulkovo va boshqa rasadxonalarida, koʻpgina xorij mamlakatlari bilan bir qatorda Oʻzbekiston Fanlar akademiyasi Astronomiya institutida ham Quyoshni oʻrganish boʻyicha tadqiqotlar olib borilmoqda (qarang: Astronomiya).
Quyosh oʻz oʻqi atrofida yer singari muntazam sharqdan gʻarbga tomon aylanadi. Aylanish tezligi Quyosh ekvatorida 2 km/sek boʻlib, qutblari tomon kamayib boradi. Ekvatorda aylanish davri =25, qutblari yaqinida esa =31 sutkaga teng. Quyoshning toʻla nurlanishi Quyosh zenitda boʻlganda Yer sirtiga tushadigan yoritilganlik (100 ming lyuks) boʻyicha aniqlanadi. Yerning Quyoshdan oʻrtacha masofasida, atmosferadan tashqaridagi yoritilganlik 127 ming lyuksni; Quyoshning yorugʻlik kuchi 2,84-1027shamni tashkil qiladi. Quyosh ning toʻla nurlanish quvvati 3,83T026 Vt, undan Yerga taxminan 2T017Vt yetib keladi.
Quyosh osmonda burchak diametri oʻrtacha 1919"26 ga teng disk singari koʻrinadi. Quyosh sirtining oʻrtacha ravshanligi (Yer atmosferasidan tashqarida kuzatilganda) 1,98T09nt, Quyosh diskining markaziy qismlari ravshanligi 2,48T0CH nt ga teng. Quyosh diskida ravshanlikning markazidan chetga tomon kamayishi spektrning turli qismlari (toʻlqin uzunliklari)da turlicha. Qisqa toʻlqinlarda chetga tomon xiralashish uzun toʻlqinlarga qaraganda kuchli. Quyosh diskining eng chetida ravshanlik bir sekund burchak ichida yuz marta kamayadi, shuning uchun Quyosh diski cheti juda aniq koʻrinadi. Rav-shanlikning Quyosh diski markazidan chetga tomon kamayishi Quyosh atmosferaga egaligidan dalolat beradi. Quyoshni tekshirish asosan uning spektrini oʻrganishga asoslangan.
Quyosh spektri mingdan ortiq yutilish chiziklari (Fraungofer chiziqlari) bilan kesilgan tutash spektrdan iborat. Quyosh spektorida energiyaning taqsimlanishi 6000°K gacha qizigan mutlaq qora jism spektrinikiga asosan mos keladi.
Fraungofer chiziqlarining toʻlqin uzunligi va intensivligi lab. nur manbalariniki bilan taqqoslanib, Quyoshda 69 kimyoviy element borligi aniqtangan. Quyosh, asosan, vodorod va geliydan tarkib topgan. Har bir 1000 vodorod atomiga 100 ta geliy, bir necha oʻn kis-lorod, uglerod, azot va boshqa element atomi toʻgʻri keladi. Quyosh spektrida ayrim molekulalar (ON, N14, SN, SO va boshqalar)ning ham chiziqlari bor.
Quyosh atmosferasi tabiatiga koʻra, 3 ta asosiy qatlam, yaʼni eng pastki qatlam — fotosfera, oʻrta qatlam — xromosfera va tashqi qatlam — quyosh tojidan iborat. Quyoshning qariyb barcha nurlanish energiyasi fotosferadan sochiladi. Fotosferaning modda zichligi 3-10 ~7g/sm³, fotosferada temperatura tashqi qatlamlarga oʻta borib kamayadi va uning oʻrtacha qiymati taxminan 6000 K, fotosfera chegarasida deyarli 4200 K boʻladi. Bosimi 2-104dan 102N/m2gacha oʻzgarib turadi. Fotosfera ostida qalinligi 200 ming km konvektiv zona joylashgan. U fotosferaga taʼsir etib turadi, natijada fotosferaning ravshanligi notekis donador (granula) tuzilishga ega va u oʻzgarib turadi. Fotosfera granulalarining diametri 150-1000 km, „yashash davri“ 5-10 min. Granulalarning ravshanligi oʻrtacha fondan =10 % ga ortiq. Fotosferada radial yoʻnalishda kvazidavriy tebranishlar harakati topildi. Bu tebranishlar 2-3 ming km oʻlchamdagi maydonlarda 5 min. davr bilan va 500 m/sek tezlik amplitudasi bilan sodir boʻladi. Bir necha tebranish davrlaridan soʻng soʻnib, yana qayta hosil boʻlishi mumkin.
Fotosferada dogʻlar va mashʼallar deb ataluvchi Quyosh yuzasining detallari kuzatiladi. Quyosh dogʻlari kuchli (5000 e) magnit maydoniga ega. Odatda, Quyosh dogʻlari yuliq toʻrsimon yorugʻ maydonchalar — mashʼallar bilan oʻralgan. Ular Quyosh diski cheti yaqinida yaqqol koʻrinadi va ravshanligi atrofnikidan 18 % ga ortiq. Mashʼallarning temperaturasi ham atrofnikidan bir necha yuz gradusga ortiq. Mashʼallar ustida, xromosferada flokkulalar kuzatiladi. Quyosh dogʻlari atrofida xromosfera va Quyosh tojida protuberanetslar deb ataluvchi gaz bulutlari, sirtmoqsimon gaz oqimlari ham kuzatiladi. Quyosh atmosferasining bu detallari Quyosh dogʻlari bilan birgalikda Quyosh yuzasining aktiv sohalarini tashkil etadi.
Quyosh dogʻlarining oʻrtacha yillik soni, faol sohalarining soni 11 yillik davr bilan koʻpayib-kamayib turadi. Quyosh dogʻlari Quyosh ekvatorining ikkala tomonidan 5° dan 30° gacha geliografik kengliklarni oʻz ichiga olgan zonada uchraydi.
Fotosfera ustida xromosfera joylashgan. Quyosh toʻla tutilgan paytda xromosferani maxsus teleskop orqali kuzatilsa, u xuddi Oy diskini oʻrab turuvchi qizgʻish halqaga oʻxshaydi. Bu halqaning tashqi tomoni notekis boʻlib, tishli gʻildirakni eslatadi. Xromosferadagi bu alanga „tilcha“lari spikulalar deb ataladi va ularning diametri 200-2000 km, balandligi esa 10000 km. Xromosfera teleskopi yordamida maʼlum monoxro-matik nurda Quyosh diskida mayda (-1000 km) va yirik (2000-8000 km) yorugʻ tugunlardan tashkil topgan xromosfera toʻri koʻzga yaqqol tashlanadi. Xromosfera toʻri koʻzlarining kattaligi 30-40 ming km.
Xromosfera spektri bir necha yuz emission chizikdardan tarkib topgan. Xromosferada modda zichligi pastdan yuqoriga tomon 1 sm³da 1015atomdan 10’ atomgacha kamayib boradi. Xromosfera bilan fotosfera chegarasida temperatura 4500°K. Xromosfera asosidan bir necha ming km balandlikda esa temperatura ortib, 15-20 ming K ga yetadi. Atmosfera bosimi fotosferanikidan mln. marta kam. Monoxromatik nurda, odatda, mashʼallar ustida flokkulalar, vodorod chizigʻi nurida qora tolalar kuzatiladi. Quyosh gardishi yaqinida protuberanetslar koʻrinadi. Flokkulalar va protuberanetslarning soni Quyosh faolligi oʻzgarishi bilan oʻzgarib turadi. Protuberanetslarning Quyoshdan oʻrtacha balandligi 30-50 ming km, uzunligi 200 ming km. Protuberanetslar bir necha oy yashashi mumkin. Protuberanetslar temperaturasi 5000— 10000°K, modda zichligi xromosferaning oʻrtacha zichligiga yaqin. Protuberanetslarning shakli va ulardagi harakat xromosfera bilan Quyosh tojidagi magnit maydoniga bogʻliq.
Quyosh tojining (oq nurda) ravshanligi Quyosh gardishi markazinikidan million marta kam. Quyosh tojida qalqonsimon va yelpigʻichsimon yogʻdu, toj nurlari va qutb chyotkalari deb ataluvchi struktura elementlarini kuzatish mumkin. Quyosh toji Quyosh faolligi maksimum boʻlgan yillarda simmetrik, minimum boʻlgan yillarda esa ekvator boʻylab choʻziq shaklda boʻladi. Quyosh toji spektrida koʻp marta ionlashgan. Gʻe, Sa, M§, S, O, 8 elementlari atomlarining emission chiziklari bor. Quyosh tojida barcha atomlar ionlashgan. Quyosh tojining oʻrtacha temperaturasi 106 K dan ortiq va toj boʻylab sekin oʻzgaradi. Xromosfera bilan Quyosh chegarasidagi temperatura 105 K; 1 m³ hajmga 107 atom toʻgʻri keladi. Quyosh tojining tashqi qatlamlaridan fazoga yuqori energiyali zarra (proton, elektron)lar sochilib turadi va bu oqim quyosh shamoli deb ataladi. Faol sohalar ustidagi tojda radionurlanish, shuningdek, rentgen nurlanishi nihoyatda kuchli, Quyoshdagi xromosfera chaqnashlari vodorod chizigʻi NsQuyoshni kuzatishda katta koʻzguli teleskoplar ishlatiladi. Bu teleskoplar optik qismlarining koʻpi qoʻzgʻalmas, Quyosh nurlari bitta (geliostat, siderostat) yoki ikkita (selostat) olam oʻqi atrofida aylanuvchi koʻzgu yordamida teleskopning qoʻzgʻalmas optik qismlariga gorizontal (gorizontal quyosh teleskopi) yoki vertikal (minorali quyosh teleskopi) holda yoʻnaltiriladi. Odatda, katta teleskoplar kuchli spektrograflar bilan birga ishlatiladi. Quyosh spektri rasmga olinadi yoki fotoelektrik oʻlchash asboblari yordamida qayd qilinadi. Yer atmosferasini kuzatishda zararli taʼsirlarni bartaraf qilish maqsadida Quyosh teleskoplari oʻrnatilgan orbital rasadxonalar yordamida Yer sathidan 20-25 km balandlikka koʻtariladigan maxsus Quyosh teleskoplari qoʻllanadi.
Sayyora shakllanishining eng keng tarqalgan nazariyasi noaniq gipoteza, 4.6 milliard yil oldin Quyosh tizimi ulkan gravitatsiyaviy qulashidan hosil bo'lganligini ta'kidlamoqda molekulyar bulut qaysi edi yorug'lik yillari bo'ylab. Bir nechta yulduzlar shu jumladan Quyosh, qulab tushayotgan bulut ichida hosil bo'lgan. Quyosh tizimini hosil qilgan gaz Quyoshnikidan bir oz ko'proq massaga ega edi. Massaning ko'p qismi markazda to'planib, Quyoshni hosil qiladi; massaning qolgan qismi a ga tekislangan protoplanetar disk, ulardan sayyoralar va Quyosh tizimidagi boshqa jismlar hosil bo'lgan.
Formatsiya gipotezasi
Frantsuz faylasufi va matematikasi Rene Dekart birinchi bo'lib Quyosh tizimining kelib chiqishi modelini o'zi taklif qildi Le Monde (ou Traité de lumière) u 1632 va 1633 yillarda yozgan va u uchun inkvizitsiya sababli nashr etishni kechiktirgan va u 1664 yilda vafot etgandan keyingina nashr etilgan. Uning fikriga ko'ra koinot aylanayotgan zarralar va Quyosh girdoblari bilan to'lgan. va sayyoralar qandaydir tarzda qisqargan, ayniqsa sayyoralarning aylanma harakatini tushuntirib beradigan va kondensatsiya va qisqarish bilan to'g'ri yo'lda bo'lgan juda katta girdobdan quyuqlashgan. Biroq, bu Nyutonning tortishish nazariyasidan oldin bo'lgan va biz endi materiyaning bu tarzda o'zini tutmasligini bilamiz.
1944 yilgi girdobli model, nemis fizigi va faylasufi Baron tomonidan tuzilgan Karl Fridrix fon Vaytsekker, Kartezyen modeliga qaytgan, Laplacian nebular diskida turbulentlik bilan bog'liq bo'lgan qo'shimchalar naqshini o'z ichiga olgan. Unda har bir girdobning soat yo'nalishi bo'yicha aylanishi va butun tizimning soat yo'nalishi bo'yicha aylanishi mos kombinatsiyasi Keplerian orbitalarida alohida elementlarning markaziy massa atrofida harakatlanishiga olib kelishi mumkin, shuning uchun tizimning umumiy harakati tufayli energiya kam tarqaladi, ammo girdoblararo chegaralarda yuqori nisbiy tezlikda material to'qnashishi mumkin va bu mintaqalarda valikli kichik konstruktsiyalar halqasimon kondensatsiya berish uchun birlashadi. Bu juda ko'p tanqid qilindi, chunki turbulentlik tartibsizlik bilan bog'liq bo'lgan hodisa va o'z-o'zidan gipoteza uchun talab qilinadigan yuqori tartibli tuzilmani keltirib chiqarmaydi. Shuningdek, u uchun echim topmaydi burchak momentum muammosi va Quyosh tizimining oy shakllanishini va boshqa asosiy xususiyatlarini tushuntirmaydi.
Weizsäcker modeli o'zgartirildi[3] 1948 yilda gollandiyalik nazariyotchi fizik Dirk Ter Xaar tomonidan muntazam ravishda olib tashlangan tashabbuslar bekor qilindi va ularning o'rniga tasodifiy turbulentlik paydo bo'ldi, bu gravitatsion beqarorlik yuzaga kelmaydigan juda qalin tumanlikka olib keladi. U sayyoralar ko'payish natijasida hosil bo'lgan bo'lishi kerak degan xulosaga keldi va tarkibidagi farqni (qattiq va suyuq sayyoralar) ichki va tashqi mintaqalar orasidagi harorat farqi, birinchisi issiqroq, ikkinchisi sovuqroq bo'lganligi sababli tushuntirdi, shuning uchun faqat refrakterlar (uchuvchan bo'lmagan) ) ichki mintaqada quyuqlashgan. Eng katta qiyinchilik shundaki, bu taxminda turbulent tarqalish atigi ming yillik davr miqyosida sodir bo'ladi, bu sayyoralar paydo bo'lishi uchun etarli vaqt bermaydi.
Nebulular gipoteza birinchi marta 1734 yilda taklif qilingan Emanuel Swedenborg keyinchalik ishlab chiqilgan va kengaytirilgan Immanuil Kant 1755 yilda. Shunga o'xshash nazariya tomonidan mustaqil ravishda shakllantirildi Per-Simon Laplas 1796 yilda.
1749 yilda, Jorj-Lui Lekler, Komte de Buffon sayyoralar Quyosh bilan kometa to'qnashganda paydo bo'lganligi va sayyoralarni hosil qilish uchun materiyani yuborganligi haqidagi fikrni o'ylab topdi. Biroq, Laplas 1796 yilda bu fikrni rad etib, shunday shakllangan har qanday sayyoralar oxir-oqibat Quyoshga qulab tushishini ko'rsatdi. Laplas sayyoralarning aylana atrofida aylanishi ularni shakllanishining zaruriy natijasi deb bildi.Bugungi kunda kometalar Quyosh tizimini shu tarzda yaratish uchun juda kichik ekanligi ma'lum.
1755 yilda Immanuil Kant buni kuzatgan deb taxmin qildi tumanliklar aslida yulduzlar va sayyoralar shakllanish mintaqalari bo'lishi mumkin. 1796 yilda Laplas tumanlik yulduzga qulab tushdi va shu tariqa qolgan material asta-sekin tashqariga tekis diskka aylanib, keyinchalik sayyoralarni hosil qildi, deb ta'kidladi.
Muqobil nazariyalar
Bir qarashda paydo bo'lishi qanchalik ishonchli bo'lsa ham, noaniq gipoteza hali ham to'siqqa duch kelmoqda burchak momentum; agar Quyosh haqiqatan ham bunday bulut qulashidan hosil bo'lgan bo'lsa, sayyoralar juda sekin aylanib yurishlari kerak edi. Quyosh tizim massasining deyarli 99,9 foizini o'z ichiga olgan bo'lsa ham, uning burchak momentumining atigi 1 foizini o'z ichiga oladi.Demak, Quyosh tezroq aylanib turishi kerak.
Gelgit nazariyasi
Burchak momentum muammosini hal qilishga urinishlar "ikki tanali" nazariyalarga qaytish foydasiga nebululyar gipotezani vaqtincha tark etishga olib keldi. Bir necha o'n yillar davomida ko'plab astronomlar afzal ko'rdilar to'lqin yoki to'qnashuvga yaqin tomonidan ilgari surilgan gipoteza Jeyms Jins 1917 yilda, boshqa sayyoralarning Quyoshga yaqinlashishi tufayli sayyoralar hosil bo'lgan deb hisoblangan. Ushbu sog'inish Quyoshdan va boshqa yulduzdan o'zaro ta'sirida katta miqdordagi moddalarni tortib olgan bo'lar edi gelgit kuchlari, keyin u sayyoralarda quyuqlashishi mumkin edi. Biroq, 1929 yilda astronom Garold Jeffreys bunday to'qnashuv deyarli mumkin emasligiga qarshi chiqdi. Gipotezaga e'tirozlar ham amerikalik astronom tomonidan ilgari surilgan Genri Norris Rassel bilan bog'liq muammolarga duch kelganligini kim ko'rsatdi burchak momentum tashqi sayyoralar uchun, sayyoralar Quyosh tomonidan qayta so'rilishini oldini olish uchun kurashmoqda.
Chamberlin-Moulton modeli
1900 yilda Forest Moulton, shuningdek, burchak impulsi tufayli noaniq gipotezaning kuzatuvlarga mos kelmasligini ko'rsatdi. Moulton va Chemberlin 1904 yilda sayyora-gipotezani yaratdilar[10] (qarang Chamberlin-Moulton planetezimal gipotezasi ). O'sha kunning ko'plab astronomlari bilan bir qatorda ular Lick rasadxonasidan olingan "spiral tumanliklar" suratlari shakllanishining bevosita dalili ekanligiga ishonishdi. sayyora tizimlari. Bular o'rniga galaktikalar bo'lib chiqdi, ammo Shapli-Kurtis haqidagi bahslar kelajakda hali 16 yil davom etdi. Astronomiya tarixidagi eng asosiy masalalardan biri bu tumanliklar va galaktikalarni ajratish edi.
Moulton va Chamberlin bir yulduz o'z hayotining boshida Quyoshga yaqinlashib, to'lqin ko'tarilishini keltirib chiqardi va bu, shuningdek, quyoshning taniqli joylariga olib keladigan ichki jarayon bilan birga, ikkala yulduzdan ham materiya iplarini chiqarib yuborishiga olib keldi. Materiallarning aksariyati orqaga qaytgan bo'lsa-da, ularning bir qismi orbitada qoladi. Iplar ko'plab mayda, qattiq bo'laklarga, "sayyoralar" ga va bir nechta kattaroq protoplanetalarga soviydi. Ushbu model qariyb 30 yil davomida ijobiy qo'llab-quvvatlandi, ammo 30-yillarning oxiriga kelib, 40-yillarda Yupiterning burchak momentumiga mos kelmasligini anglab, tashlab yuborildi, ammo uning bir qismi, ya'ni sayyora sonining ko'payishi saqlanib qoldi.
Littlton ssenariysi
1937 va 1940 yillarda, Rey Lytlton Quyoshga yo'ldosh yulduz o'tib ketayotgan yulduz bilan to'qnashgan deb taxmin qildi.[3] Bunday senariy 1935 yilda Genri Rassell tomonidan ilgari surilgan va rad etilgan (garchi u Quyoshda tug'ilgan deb taxmin qilgan bo'lsa kerak ochiq klaster, bu erda yulduzlar to'qnashuvi tez-tez uchraydi). Lyttleton yerdagi sayyoralarni o'zlari zichlasha olmasliklari uchun juda kichikligini ko'rsatdi, shuning uchun aylanma beqarorlik tufayli bitta katta proto-sayyora ikkiga bo'linib, Yupiter va Saturnni hosil qildi va boshqa sayyoralar paydo bo'lgan birlashtiruvchi filament bilan. 1940 va 1941 yillardagi keyingi model uch yulduzli tizimni o'z ichiga oladi, ikkilik plyus Quyoshni o'z ichiga oladi, unda ikkilik birlashadi va keyinchalik aylanma beqarorlik tufayli ajralib chiqadi va ular orasidagi hosil bo'lgan ipni qoldirib tizimdan chiqib ketadi. quyosh. Lyman Spitserning e'tirozlari ushbu modelga ham tegishli
Tarmoqli tuzilish modeli
1954, 1975 va 1978 yillarda Shved astrofizigi Hannes Alfven zarrachalar harakati tenglamalariga elektromagnit effektlarni kiritgan va burchak momentumining tarqalishi va tarkibiy farqlari tushuntirilgan. 1954 yilda u birinchi bo'lib geliyni o'z ichiga olgan, lekin ba'zi bir qattiq zarracha aralashmalari ("meteor yomg'ir"), B-bulut, asosan uglerodli, C-bulutli A asosan vodorod va D-bulut, asosan kremniy va temirdan yasalgan. A bulutidagi aralashmalar Mars va Oyni hosil qiladi (keyinchalik Yer tomonidan egallab olingan), B bulutidagi aralashmalar qulab tushib, tashqi sayyoralarni hosil qiladi, C bulutida ular Merkuriy, Venera, Yer, asteroid kamariga, oyga aylanadi. Pluton, Triton, Saturnning tashqi yo'ldoshlari, Uranning yo'ldoshlari, Kuyper Belt va Oort bulutlari D bulutidan hosil bo'lgan bo'lishi mumkin.
Yulduzlararo bulut nazariyasi
1943 yilda Sovet astronomi Otto Shmidt Quyosh hozirgi shaklida zichlikdan o'tishni taklif qildi yulduzlararo bulut, sayyoralar oxir-oqibat paydo bo'lgan chang va gaz buluti bilan o'ralgan. Bu Quyoshning sekin aylanishi o'ziga xos bo'lganligi va sayyoralar Quyosh bilan bir vaqtda shakllanmagan deb taxmin qilish orqali burchak momentum muammosini hal qildi. Rus maktabini shakllantirgan model kengaytmalari qatoriga Gurevich va Lebedinskiy (1950 yilda), Safronov (1967,1969 yillarda), Safronov va Vityazeff (1985 yilda), Safronov va Ruskol (1994 yilda) va Ruskol (1981 yilda) kiradi. , Boshqalar orasida Biroq, bu gipoteza jiddiy tarzda buzildi Viktor Safronov sayyoralarni bunday tarqoq konvertdan shakllantirish uchun zarur bo'lgan vaqt miqdori Quyosh tizimining belgilangan yoshidan ancha oshib ketishini ko'rsatdi.
Rey Lytlton nazariyani 3-chi tanaga kerak emasligini ko'rsatib, 1944 yilda Bondi va Xoyl tomonidan tasvirlangan chiziqlarni ko'payish mexanizmi bulut materialini yulduz tomonidan ushlash imkoniyatini beradi (Uilyams va Kremin, 1968, joy.).
Xoyl gipotezasi
Ushbu modelda[3] (1944 yildan) hamrohi Quyosh tomonidan tutilgan material va u sayyoralardan hosil bo'lgan sayyoralar bilan yangi bo'ldi. Bir yil o'tgach, bu supernova edi. 1955 yilda u Laplasga o'xshash tizimni taklif qildi va 1960 yilda matematik tafsilotlari bilan ajralib turdi. Laplasdan farqi shundaki, disk va Quyosh o'rtasida magnit moment paydo bo'ladi, bu darhol kuchga kiradi, aks holda ko'proq va ko'proq moddalar chiqarib tashlanadi juda katta sayyora tizimida, Quyosh bilan taqqoslanadigan narsa. Tork magnit bog'lanishni keltirib chiqaradi va burchak momentumini Quyoshdan diskka o'tkazadi. Magnit maydon kuchlanishi 1 gauss bo'lishi kerak edi. Torkning mavjudligi diskka muzlatib qo'yilgan magnit kuch chiziqlariga bog'liq (taniqli MHD (magnetohidrodinamik) teoremasining muzlatilgan kuch chiziqlaridagi natijasi). Disk chiqarilganda quyosh kondensatsiyasi harorati 1000 darajadan K dan yuqori bo'lishi mumkin emasligi sababli, bir qator refrakterlar qattiq bo'lishi kerak, ehtimol bu kondensatsiya va ko'payish bilan birga o'sadigan nozik tutun zarralari. Ushbu zarralar disk bilan birga siljiydi, agar ularning Yerning orbitasida diametri 1 metrdan kam bo'lsa, chunki disk tashqariga siljiydigan bo'lsa, faqat erga sayyoralar paydo bo'ladigan joyda refrakterlardan iborat yordamchi disk qoladi. Magnit birikma maqbul fikr bo'lsa, model sayyoralarning massasi va tarkibi va burchakli momentum taqsimoti bilan yaxshi mos keladi, ammo tushunarsiz egizaklik, Mars va Merkuriyning kam massasi va planetoid kamarlar. Dondurulmuş magnit maydon chiziqlari kontseptsiyasini aniqlagan Alfven edi.
Kuyper nazariyasi
Jerar Kuyper (1944 yilda) Ter Xar singari, muntazam ravishda ilgarilash mumkin emas deb ta'kidladi va Quyosh tumanligida katta tortishish beqarorliklari paydo bo'lishi va kondensatsiya hosil qilishi mumkin deb taxmin qildi. Bunda Quyosh tumanligi Quyosh bilan ko-genetik bo'lishi yoki uni tutib olishi mumkin. Zichlik taqsimoti nimani yaratishi mumkinligini aniqlaydi: yoki sayyora tizimi yoki yulduz hamrohi. Sayyoralarning 2 turi Roche limiti tufayli qabul qilingan. Quyoshning sekin aylanishi uchun Kuyper G yulduzining kattaroq muammosi deb bilganligi uchun hech qanday izoh berilmagan.

Whipple nazariyasi


Yilda Fred Uipl 1948 yildagi senariy[3] diametri taxminan 60,000 AU tutunli bulut va 1 ga teng quyosh massasi (M☉ ) Quyosh bilan shartnoma tuzadi va ishlab chiqaradi. U Quyoshning o'xshash xususiyatini hisobga olgan holda, uning ahamiyatsiz burchak momentumiga ega. Ushbu tutun buluti kichikroq va katta burchak momentumiga ega. Katta tutun va gaz tumanligi qulash vaqti taxminan 100 million yilni tashkil qiladi va bu ko'rsatkich dastlab sekin, keyingi bosqichlarda o'sib boradi. Sayyoralar 2-bulutda ishlab chiqarilgan yoki egallagan kichik bulutlardan quyuqlashadi, orbitalar deyarli aylana shaklida bo'ladi, chunki aksessiya qarshilik ko'rsatadigan muhit ta'sirida ekssentriklikni kamaytiradi, orbital yo'nalishlar o'xshash bo'ladi, chunki kichik bulut dastlab kichik bo'lgan va harakatlar umumiy yo'nalishda bo'lar edi. Protoplanetalar shunchalik yuqori darajaga qadar qizib ketdiki, shunchalik uchuvchan birikmalar yo'qolgan bo'lar edi va orbitaning tezligi uzoqlashgan sayin kamayadi, shunda er sayyoralariga ko'proq ta'sir ko'rsatishi mumkin edi. Ushbu stsenariyning zaif tomonlari shundan iboratki, amalda barcha yakuniy qonuniyatlar oldingi taxminlar sifatida kiritilgan va taxminlarning katta qismi miqdoriy hisob-kitoblar bilan tasdiqlanmagan. Shu sabablarga ko'ra u keng qabul qilinmadi.

Urey modeli


Amerikalik kimyogar Xarold Urey, kosmokimyaga asos solgan, senariyni ilgari surgan[3] 1951, 1952, 1956 va 1966 yillarda asosan meteoritlarga asoslangan va Chandrasekxarning barqarorlik tenglamalarini qo'llagan va Quyosh atrofidagi gaz va chang diskida zichlik taqsimotini olgan. Simob kabi uchuvchi elementlarni erdagi sayyoralar ushlab turishi uchun u Quyoshdan sayyoralarni himoya qiladigan o'rtacha qalin gaz va chang halosini joylashtirdi. Olmoslarni hosil qilish uchun sof uglerod kristallari, Oy o'lchamidagi narsalar, tortish kuchi jihatidan beqaror bo'lib qolgan gaz sharlari diskda keyingi bosqichda gaz va chang tarqalishi bilan hosil bo'lishi kerak edi. Gaz yo'qolganda va olmoslar grafitga aylanganda bosim tushdi, gaz esa Quyosh tomonidan yoritildi. Bunday sharoitda sezilarli darajada ionlanish mavjud bo'lib, gaz magnit maydonlar bilan tezlashar edi, shu sababli burchak impulsini Quyoshdan o'tkazish mumkin edi. Uning ta'kidlashicha, oy o'lchamidagi bu jismlar to'qnashuvlar natijasida vayron bo'lgan, gaz tarqalib, yadroda to'plangan qattiq moddalar qolgan va natijada kichik bo'laklar kosmosga uzoqlashib ketgan, katta qismlar esa ortda qolib sayyoralarga joylashgan. Uning ta'kidlashicha, Oy xuddi shunday saqlanib qolgan yadro edi.

Protoplanet nazariyasi


1960, 1963 va 1978 yillarda,[13] W. H. McCrea taklif qildi protoplanet nazariyasiQuyosh va sayyoralar bir xil bulut ichidagi moddalardan yakka holda birlashganda, keyinchalik kichik sayyoralar Quyoshning katta tortishish kuchi bilan ushlangan.[7] U protoplanetar tumanlikda bo'linishni o'z ichiga oladi va quyosh tumanligi yo'q. Flokkula aglomeratsiyalari (yulduzlar paydo bo'lgan yulduzlararo materiyada paydo bo'lishi taxmin qilinadigan yuqori tovushli turbulentlikni tashkil qiladi deb taxmin qilinadi) Quyosh va protoplanetalarni hosil qildi, ikkinchisi bo'linib sayyoralar hosil qildi. Ikki qism tortishish kuchi bilan bir-biriga bog'lanib turolmaydi, massa nisbati kamida 8 dan 1 gacha bo'ladi va ichki sayyoralar uchun ular mustaqil orbitaga o'tadilar, tashqi sayyoralar uchun qismlardan biri Quyosh tizimidan chiqadi. Ichki protoplanetalar Venera-Merkuriy va Yer-Mars edi. Kattaroq sayyoralarning yo'ldoshlari bo'linadigan protoplanetaning 2 qismini bog'laydigan "tomchilar" dan hosil bo'lgan va bu tomchilar ba'zi asteroidlarni hisobga olishi mumkin. Yerdagi sayyoralarda Lunani hisobga olmaydigan katta oy yo'q edi. Mars va Yerning o'xshash aylanish tezligi va eksenel burilishlariga o'xshash burchak tezligi kabi ba'zi kuzatuvlarni bashorat qiladi. Ushbu sxemada 6 ta asosiy sayyora mavjud: 2 ta er usti, Venera va Yer, 2 ta yirik, Yupiter va Saturn va 2 ta tashqi, Uran va Neptun; va uchta kichik sayyora: Merkuriy, Mars va Pluton.

Ushbu nazariya bir qator muammolarga ega, masalan, sayyoralarning barchasi Quyoshni bir xil yo'nalishda nisbatan past ekssentriklik bilan aylanib yurishini, agar ularning har biri yakka holda qo'lga kiritilsa, ehtimol juda kam ko'rinadi.[7]


Kemeronning gipotezasi


Amerikalik astronomda Alastair G. W. Cameron gipotezasi (1962 va 1963 yillarda),[3] protosun taxminan 1-2 Quyosh massasiga ega, diametri 100000 AU atrofida, tortish kuchi jihatidan beqaror, qulab tushadi va kichik bo'linmalarga bo'linadi. Magnit maydon 1/100000 gauss tartibida. Yiqilish paytida kuchning magnit chiziqlari buriladi. Kollaps tez va H molekulalarining dissotsilanishi, undan keyin H ionlashishi va G ning ikki karra ionlanishi natijasida amalga oshiriladi. Burchak momentum aylanish beqarorligiga olib keladi, bu esa laplas diskini hosil qiladi. Ushbu bosqichda nurlanish ortiqcha energiyani olib tashlaydi va disk nisbatan qisqa vaqt ichida juda salqin bo'ladi (taxminan 1 mln. Yr.) Va Uipple kometizm deb atagan kondensatsiya sodir bo'ladi. Ularni birlashtirish natijasida ulkan sayyoralar paydo bo'ladi, ular o'z navbatida disklar hosil bo'lib, ular Oy tizimiga aylanadi. Yerdagi sayyoralar, kometalar va asteroidlarning paydo bo'lishi parchalanish, qizish, erish, qotish va boshqalarni o'z ichiga olgan. ulkan ta'sir gipotezasi Oyning kelib chiqishi uchun.

Qo'lga olish nazariyasi


The ta'qib qilish nazariyasitomonidan taklif qilingan Maykl Mark Vulfson 1964 yilda Quyosh tizimi vujudga kelgan to'lqin Quyosh va past zichlikdagi o'zaro ta'sirlar protostar. Quyoshning tortishish kuchi protostarning tarqoq atmosferasidan material oladigan bo'lar edi, keyinchalik u qulab tushib, sayyoralarni hosil qiladi.[14] Biroq, ta'qib qilish nazariyasi Quyosh uchun sayyoralarga qaraganda boshqa yoshni taxmin qiladi,[iqtibos kerak ] Holbuki, Quyosh va Quyosh tizimining qolgan yoshlari o'xshashligi ularning bir vaqtning o'zida paydo bo'lganligini ko'rsatadi.[15]

Aslida qo'lga kiritilgan sayyoralar 1974 va 1977 yillarda Dormand va Vulfson va Vulfsonlarning ekssentrik orbitalariga ega bo'lar edi.[16] to'qnashuv ehtimolini taklif qildi. Filamentni Quyosh tutgan va undan sayyoralar paydo bo'lgan proto-yulduz o'tib ketadi. Bunda filamentdagi 6 nuqta massasiga to'g'ri keladigan 6 ta sayyora bo'lgan, sayyoralar bilan "Enyo "va"Bellona "Bellona va Enyo, quruqlikda bo'lishiga qaramay, Yupiterga qaraganda ancha katta va ularning to'qnashuvlari qisqacha sabablarga ko'ra deyteriy-deuterium zanjirli reaktsiyalar, ikkala sayyorani ham parchalaydi. Enyoning ichki qismidagi cho'kmalar Venerani, Bellonaning ichki qismidagi cho'kmalar Yerni hosil qiladi.[17] To'qnashuvning qayta ko'rib chiqilgan modelida, hozirda Neptunning massasidan atigi ikki baravar ko'p bo'lgan Enyo Quyosh tizimidan chiqarib yuborilgan, endi Bellona, ​​Uran massasining atigi uchdan bir qismi deb taxmin qilingan bo'lsa, ikkiga bo'linib, Yer va Venera. Mars, Oy, Pluton, Haumea, Makemake, Eris va V774104 Enyoning sobiq yo'ldoshlari. Merkuriy - bu Bellonaning parchasi yoki Enyoning qochib ketgan oyi. Enyo-Bellona to'qnashuvida asteroid kamari, Kuyper kamari, Oort buluti va kometalar ham paydo bo'ldi. Pluton Neptunning Triton sun'iy yo'ldoshi yonidan o'tib, uning retrograd orbitasini egallashiga sabab bo'ldi.[18]


T.J.J. Qarang, amerikalik astronom va dengiz floti kapitani bo'lib, u bir vaqtlar Louell rasadxonasida Eller Xeyl ostida ishlagan. U o'zining ko'p (60 ga yaqin) maqolalari tufayli kultga ergashgan Ommabop astronomiya lekin ichida ham Astronomische Nachrichte (Astronomik yangiliklar) (asosan ingliz tilida). USNO ning Mare orolida, Cal. Stantsiya, u 1910 yilda nashr etilgan "Yulduzlar tizimlari evolyutsiyasi bo'yicha tadqiqotlar: 2-chi asarida" qo'lga olish nazariyasi deb nomlangan modelni ishlab chiqdi. 2. Dinamik printsiplarga asoslanib va ​​kuzatilgan hodisalar bilan tasvirlangan kosmik evolyutsiyani ta'qib qilish nazariyasi. sayyoralar tashqi Quyosh tizimida hosil bo'lgan va Quyosh tomonidan tutilgan deb taxmin qilgan spiral tumanliklar, sayyoralar tizimi, ikki va ko'p yulduzlar va klasterlar va Somon yo'lining yulduz bulutlari "; oylar shu tarzda shakllangan va sayyoralar tomonidan qo'lga kiritilgan. Bu sayyora-gipotezani birgalikda ishlab chiqqan Forest Moulton bilan janjallashishga sabab bo'ldi. Oldindan ko'rish 1909 yilda Oklenddagi (Kaliforniya shtati) Chabot rasadxonasida ASP (Tinch okeanining Astronomiya jamiyati) yig'ilishida taqdim etilgan va gazeta sarlavhalari ostida "Prof. See's Paper Sensations Sensations" (San-Frantsisko Chaqiruvi) va "Olimlar Furore Over Nebulae "(San-Fransisko imtihonchisi). Bizning hozirgi dinamikamiz haqidagi bilimimiz ta'qib qilishni ehtimoldan yiroq qiladi, chunki bu maxsus sharoitlarni talab qiladi.[10]


Quyosh bo'linishi


Shveytsariyalik astronom Lui Jakot (1951, 1962, 1981 yillarda),[19] Vayzaker va Ter Xar singari girdoblar haqidagi dekartiy g'oyani davom ettirdilar, ammo girdoblar ichidagi girdoblar yoki girdoblar iyerarxiyasini, ya'ni Oy tizimi girdobini, Quyosh tizimining girdobini va galaktik girdobini taklif qildilar. U sayyora orbitalari aylana yoki ellips emas, balki spiraldir degan tushunchani ilgari surdi. Jakot shuningdek, galaktikalarni kengaytirishni taklif qildi (yulduzlar markazdan uzoqlashadi) va bu oylar o'z sayyoralaridan uzoqlashadi.

Shuningdek, u sayyoralar birin-ketin Quyoshdan, xususan aylanish natijasida vujudga kelgan ekvatorial bo'rtiqdan chiqarib yuborilganligini ta'kidladi. ulardan biri asteroid kamarini tark etgan holda, bu haydashda parchalanadi. O'sha paytda Kuiper Belt noma'lum edi, ammo, ehtimol, u ham xuddi shu singan parchalanish natijasi bo'lishi mumkin. Oylar, sayyoralar singari, ekvatorial haydash sifatida paydo bo'lgan, ammo, albatta, ularning ota-sayyoralaridan, ba'zi bir parchalanish, halqalarni qoldirish va Yer oxir-oqibat boshqa oyni chiqarib yuborishi kerak.


Ushbu modelda sayyoralar uchun 4 faza bor edi: aylanishsiz va "Merkuriy hozirgidek" Quyosh tomon bir xil tomonni ushlab turamiz (biz, albatta, 1965 yildan beri buni bilamiz), juda sekin, tezlashgan va nihoyat, kunlik aylanish.


U vorteks harakati orqali ichki va tashqi sayyoralar va ichki va tashqi oylarning farqlarini tushuntirdi. Merkuriyning ekssentrik orbitasi uning yaqinda Quyoshdan chiqarilishi va Veneraning sekin aylanishi bilan "sekin aylanish bosqichida" bo'lganligi bilan izohlanib, oxirigacha chiqarildi.


The Tom Van Flandern model[20][21][22][23] birinchi marta 1993 yilda kitobining birinchi nashrida taklif qilingan. 1999 yildan va undan keyin qayta ko'rib chiqilgan versiyada, dastlabki Quyosh tizimida har biri haddan tashqari aylanib chiquvchi Quyoshning ekvatorial bo'rtmalaridan ajralib chiqqan 6 juft egizak sayyora bor edi (tashqi markazdan qochiruvchi kuchlar ichki tortishish kuchidan yuqori), shuning uchun har xil harorat, o'lcham, va kompozitsiyalar, va undan keyin quyuqlashib, taxminan 100 million yildan keyin tarqalib ketgan oltita disk bilan, 6 sayyora portlashi bilan. Ulardan to'rttasi geliy hukmron, suyuq va beqaror edi (geliy sinfidagi sayyoralar). Bular V (Maldek) edi[24] (V sayyora uchun turgan, birinchi to'rttasi Merkuriy va Marsni o'z ichiga olgan), K (Kripton), T (transneptunian) va X sayyorasi. Bu holatlarda kichikroq oylar portlashi sababli to'lqin stresslari tufayli 4 ta komponentning kamarlari 2 ta asosiy sayyora zonalari. LHB-A sayyorasi, uning portlashi sabab bo'lgan deb taxmin qilingan Kechiktirilgan og'ir bombardimon (taxminan 4 eon oldin), Yupiter bilan egizak va LHB-B, portlashi boshqa LHBga sabab bo'lgan deb taxmin qilingan bo'lsa, Saturn bilan egizak edi. Jovian sayyoralari bo'lgan LHB-A, Yupiter, LHB-B va Saturn sayyoralarida har bir juftlikdagi ichki va kichik sheriklar uning portlashiga sabab bo'lgan ulkan to'lqin stresslariga duch kelishdi. Portlashlar ular oyni ajratib olishdan oldin sodir bo'lgan. Oltita suyuqlik bo'lgani uchun ular hech qanday iz qoldirmadilar. Qattiq sayyoralar faqat bir oyga bo'linadi va Merkuriy Veneraning oyi edi, ammo Quyoshning tortish kuchi ta'sirida uzoqlashdi. Mars Maldekning oyi edi.


Portlashayotgan sayyoralar va yo'ldoshlarga qarshi muhim dalillardan biri shundaki, bunday portlashlarni keltirib chiqaradigan quvvat manbai bo'lmaydi.


Xerndonning modeli


Advertisement
Yilda J. Marvin Xerndon modeli,[25]ichki (katta yadroli) sayyoralar yuqori bosim va yuqori haroratda ulkan gazsimon protoplanetalar ichidan kondensatsiya va yomg'ir yog'ishidan hosil bo'ladi. Erning to'liq kondensatsiyasiga v kiradi. Toshli yadroni Yerning hozirgi diametrining taxminan 66% gacha siqib chiqargan 300 ta massa gaz / muz qobig'i (Yupiter taxminan 300 trillion massaga teng, bu taxminan 2000 trillion trillion kg ga teng; Yer 6 trillion trillion kg ga teng). T Tauri (qarang T Tauri tipidagi yulduzlar ) Quyoshning otilishi gazlarni ichki sayyoralardan uzoqlashtirdi. Merkuriy to'liq kondensatsiyalanmagan va uning gazlarining bir qismi tozalangan va Mars va Yupiter oralig'idagi mintaqaga etkazilgan, u erda Quyosh tizimining tashqi qismidan tushayotgan oksidlangan kondensat bilan birlashtirilgan va oddiy xondrit meteoritlari uchun asosiy materialni hosil qilgan, Asosiy-Belt asteroidlari va ichki sayyoralar, ayniqsa Mars uchun qoplama. Ichki sayyoralar orasidagi farqlar, avvalambor, protoplanetar siqilishning turli darajalarining natijasidir. Dekompressiyadan kelib chiqadigan sayyoralar hajmining ko'payishiga ikki xil reaktsiya mavjud: sirt maydonini ko'paytirish uchun hosil bo'ladigan yoriqlar va egrilik o'zgarishini hisobga olgan holda tog 'tizmalarini hosil qiladigan katlama.

Ushbu sayyora shakllanish nazariyasi Butun Yer dekompressiya dinamikasi (WEDD) modelining kengayishini anglatadi,[26]bu sayyoralar yadrosidagi tabiiy yadro-bo'linish reaktorlarini o'z ichiga oladi; Xerndon 11 maqolasida uni batafsil bayon qiladi, tushuntiradi va tushuntiradi Hozirgi fan 2005 yildan 2013 yilgacha va 2008 yildan 2012 yilgacha nashr etilgan beshta kitobda. U o'zining modelini "bo'linmas" deb ataydi - bu Yerning asosiy jihatlari mantiqiy va sababli ravishda bog'langanligini va uning Yupiterga o'xshash shakllanishidan kelib chiqishini anglatadi. ulkan.


1944 yilda nemis kimyogari va fizigi Arnold Evken 100-1000 atm bosimdagi ulkan protoplanetada Yerning quyuqlashishi va yomg'ir yog'ishi termodinamikasini ko'rib chiqdi. 1950-yillarda va 1960-yillarning boshlarida bunday bosim ostida sayyoralar paydo bo'lishining muhokamasi bo'lib o'tdi, ammo Kemeronning 1963 yildagi past bosimli (taxminan 4-10 atm.) Modeli bu g'oyani bekor qildi.


Nazariyalarning tasnifi


Jinslar, 1931 yilda, turli xil modellarni 2 guruhga ajratdi: sayyora paydo bo'lishi uchun material Quyoshdan kelgan va u bir vaqtda yoki ketma-ket kelmagan va bo'lishi mumkin bo'lganlar.[27]

Uilyam Makkrea, 1963 yilda ularni ikkita guruhga ajratdi: sayyoralarning paydo bo'lishini Quyoshning paydo bo'lishi bilan bog'liq bo'lganlar va Quyoshning paydo bo'lishidan mustaqil bo'lgan joylar, Quyoshdan keyin paydo bo'ladigan sayyoralar odatiy holga aylanadi. Yulduz.[27]


Ter Xar va Kemeron[28] Quyoshning o'zi emas, balki protosun bilan boshlanadigan, ehtimol Quyoshning rivojlanishi va ehtimol quyosh konvertining yopiq tizimini ko'rib chiqadigan va Belot bu nazariyalarni monistik deb ataydigan nazariyalarni ajratib ko'rsatdi; va Quyosh va ba'zi bir begona jismlar o'rtasidagi o'zaro ta'sir mavjud bo'lgan ochiq tizimni ko'rib chiqadiganlar, bu sayyoralar tizimiga olib boradigan rivojlanishning birinchi bosqichi bo'lishi kerak va Belot bu nazariyalarni dualistik deb atashini ta'kidlaydilar.


Erve Rivzning tasnifi[29] shuningdek ularni Quyosh bilan birgalikda genetik deb tasniflaydi yoki o'zgartirilmagan yoki o'zgartirilmagan yulduzlar / yulduzlararo materiallardan hosil bo'lgan. U 4 guruhni ham taniydi: 1) 1700 yillarda Shvedborg, Kant va Laplas tomonidan yaratilgan quyosh tumanligi asosida yaratilgan modellar; 2) yulduzlararo kosmosdan olingan bulutni taklif qilayotganlar, ularning asosiy tarafdorlari Alfven va Gustaf Arreniyus (1978 yilda) va Alfven va Arreniyus; 3) opa-singil yulduz qandaydir tarzda parchalanib ketganligi va uning tarqaladigan materialining bir qismi Quyosh tomonidan tutilganligi haqidagi ikkilik gipotezalar, asosiy gipoteza 40-yillarda Littlton bo'lgan; 4) va Jeans, Jeffreys, and Woolfson and Dormandning filament g'oyalari.


Uilyams va Kreminda[27] toifalar: (1) sayyoralarning kelib chiqishi va shakllanishini asosan Quyosh bilan bog'liq deb hisoblaydigan modellar, shu bilan birga 2 ta hosil bo'lish jarayoni bir vaqtda yoki ketma-ket bo'lib o'tadi, (2) sayyoralarning shakllanishini mustaqil deb hisoblaydigan modellar. Quyoshning paydo bo'lish jarayoni, Quyoshdan keyin hosil bo'lgan sayyoralar oddiy yulduzga aylanadi; bunda 2 ta kichik toifalar mavjud: a) bu erda sayyoralar paydo bo'lishi uchun material Quyoshdan yoki boshqa yulduzdan olinadi, b) bu ​​narsa yulduzlararo kosmosdan olinadi. Ular eng yaxshi modellar Hoylning magnit birikmasi va Makkreaning flokulalari degan xulosaga kelishdi.


Vulfson[30] 1) Laplas, Dekart, Kant va Vayzakerni o'z ichiga olgan monistik va 2) Lekler (komediya de Buffon), Chamberlin-Moulton, Jeans, Jeffreys va Schmidt-Lyttletonlarni o'z ichiga olgan dualistlar.


Nebular gipotezaning qayta tiklanishi


Xabble kosmik teleskopi tomonidan ko'rilgan Beta-Piktisis


Advertisement
1978 yilda astronom A. J. R. Prentice o'zining zamonaviy laplasiya nazariyasida burchak momentum muammosini asl diskda chang zarralari hosil qilgan tortishish yo'li bilan markazda aylanishni sekinlashtirgan holda hal qilish mumkin degan taklif bilan Laplasiya nebulyar modelini tikladi.[7][31] Prentice, shuningdek, yosh Quyosh protoplanetar diskka burchak impulsini o'tkazishni va sayyoralar sodir bo'lishi tushunilgan ovozdan chiqarib yuborish orqali T Tauri yulduzlari.[7][32] Biroq, uning bunday shakllanishiga qarshi bo'lgan tortishuvi toruslar yoki uzuklar so'roq qilingan, chunki bunday uzuklar sayyoralarga qulashidan oldin tarqalib ketishi mumkin.[7]

Zamonaviy keng tarqalgan qabul qilingan sayyoralar shakllanishi nazariyasi - Quyosh Nebulyar Disk modeli (SNDM) ning tug'ilishi sovet astronomi asarlarida kuzatilishi mumkin. Viktor Safronov.[33] Uning kitobi Protoplanetar bulut evolyutsiyasi va Yer va sayyoralarning shakllanishi,[34] 1972 yilda ingliz tiliga tarjima qilingan bo'lib, olimlarning sayyoralarning paydo bo'lishi haqidagi fikrlariga uzoq muddatli ta'sir ko'rsatdi.[35] Ushbu kitobda sayyoralarni shakllantirish jarayonining deyarli barcha asosiy muammolari shakllangan va ularning ba'zilari hal qilingan. Asarlarida Safronov g'oyalari yanada rivojlangan Jorj Vetill, kim kashf etdi qochib ketish.[7] 1980-yillarning boshlariga kelib, SNDM shaklidagi noaniq gipoteza yana ijobiy tomonga qaytdi, bu esa astronomiyada ikkita katta kashfiyotga olib keldi. Birinchidan, kabi bir qator aftidan yosh yulduzlar Beta Piktoris, nebulyar gipotezasida bashorat qilinganidek, salqin chang disklari bilan o'ralganligi aniqlandi. Ikkinchidan Infraqizil astronomik sun'iy yo'ldosh, 1983 yilda ishga tushirilgan, ko'plab yulduzlarda an borligini kuzatgan ortiqcha infraqizil nurlanish agar ular sovutish materiallari disklari atrofida aylangan bo'lsa, buni tushuntirish mumkin edi.


Aniq muammolar


Nebulular gipotezaning keng ko'rinishi keng tarqalgan bo'lsa-da,[36] ko'plab tafsilotlar yaxshi tushunilmagan va takomillashtirilmoqda.

Tozalangan nebulyar model butunlay Quyosh tizimining kuzatuvlari asosida ishlab chiqilgan, chunki u 1990-yillarning o'rtalariga qadar taniqli bo'lgan. Bu boshqalarga nisbatan keng qo'llanilishi mumkin deb taxmin qilinmagan sayyora tizimlari, ammo olimlar boshqa yulduzlar atrofida protoplanetary disklarni yoki hatto sayyoralarni topib, nebulyar modelni sinab ko'rishga intilishgan.[37] 2013 yil 30-avgust holatiga ko'ra kashfiyot 941 tashqi sayyoralar[38] ko'plab kutilmagan hodisalarni keltirib chiqardi va ushbu kashf qilingan sayyora tizimlari yoki yangi modellarni hisobga olgan holda nebulyar modelni qayta ko'rib chiqish kerak.


Bugungi kunga qadar kashf etilgan ekstrasolyar sayyoralar orasida Yupiterning kattaligi yoki undan kattaroq, ammo atigi bir necha soatlik aylanish davri juda qisqa sayyoralar mavjud. Bunday sayyoralar o'zlarining yulduzlari atrofida juda yaqin aylanishlari kerak edi; shu qadar yaqinki, ularning atmosferasi quyosh nurlari bilan asta-sekin yo'q bo'lib ketardi.[39][40] Ularni qanday tushuntirish borasida bir fikrga kelilmagan issiq Yupiterlar, but one leading idea is that of sayyora migratsiyasi, similar to the process which is thought to have moved Uranus and Neptune to their current, distant orbit. Possible processes that cause the migration include orbital friction while the protoplanetary disk is still full of hydrogen and helium gas[41]and exchange of angular momentum between giant planets and the particles in the protoplanetary disc.[42][43][44]


The detailed features of the planets are another problem. The solar nebula hypothesis predicts that all planets will form exactly in the ecliptic plane. Instead, the orbits of the klassik sayyoralar have various (but small) inclinations with respect to the ecliptic. Furthermore, for the gas giants it is predicted that their rotations and moon systems will also not be inclined with respect to the ecliptic plane. However, most gas giants have substantial axial tilts with respect to the ecliptic, with Uran having a 98° tilt.[45] The Oy being relatively large with respect to the Earth and other moons which are in irregular orbits with respect to their planet is yet another issue. It is now believed these observations are explained by events which happened after the initial formation of the Solar System.[46]


Solar evolution hypotheses


Advertisement
Advertisement
Attempts to isolate the physical source of the Sun's energy, and thus determine when and how it might ultimately run out, began in the 19th century.

Kelvin–Helmholtz contraction


At that time, the prevailing scientific view on the source of the Sun's heat was that it was generated by tortishish qisqarishi. In the 1840s, astronomers J. R. Mayer and J. J. Waterson first proposed that the Sun's massive weight causes it to collapse in on itself, generating heat, an idea expounded upon in 1854 by both Hermann fon Helmholts va Lord Kelvin, who further elaborated on the idea by suggesting that heat may also be produced by the impact of meteors onto the Sun's surface.[47] Theories at the time suggested that stars evolved moving down the asosiy ketma-ketlik ning Hertzsprung-Rassel diagrammasi, starting off as diffuse red supergiants before contracting and heating to become blue main-sequence stars, then even further down to red dwarfs before finally ending up as cool, dense black dwarfs. However, the Sun only has enough tortishish potentsiali energiyasi to power its yorqinlik by this mechanism for about 30 million years—far less than the age of the Earth. (This collapse time is known as the Kelvin-Gelmgolts vaqt shkalasi.)[48]

Albert Eynshteyn ning rivojlanishi nisbiylik nazariyasi in 1905 led to the understanding that nuclear reactions could create new elements from smaller precursors, with the loss of energy. Uning risolasida Yulduzlar va atomlar, Artur Eddington suggested that pressures and temperatures within stars were great enough for hydrogen nuclei to fuse into helium; a process which could produce the massive amounts of energy required to power the Sun.[47] In 1935, Eddington went further and suggested that other elements might also form within stars.[49] Spectral evidence collected after 1945 showed that the distribution of the commonest chemical elements, carbon, hydrogen, oxygen, nitrogen, neon, iron etc., was fairly uniform across the galaxy. This suggested that these elements had a common origin.[49] A number of anomalies in the proportions hinted at an underlying mechanism for creation. Lead has a higher atomic weight than gold, but is far more common. Hydrogen and helium (elements 1 and 2) are virtually ubiquitous yet lithium and beryllium (elements 3 and 4) are extremely rare.[49]


Qizil gigantlar


Asosiy maqola: Qizil gigant
While the unusual spectra of red giant stars had been known since the 19th century,[50] bo'lgandi Jorj Gamov who, in the 1940s, first understood that they were stars of roughly solar mass that had run out of hydrogen in their cores and had resorted to burning the hydrogen in their outer shells.[iqtibos kerak ] Bu ruxsat berdi Martin Shvartschild to draw the connection between red giants and the finite lifespans of stars. It is now understood that red giants are stars in the last stages of their life cycles.

Fred Xoyl noted that, even while the distribution of elements was fairly uniform, different stars had varying amounts of each element. To Hoyle, this indicated that they must have originated within the stars themselves. The abundance of elements peaked around the atomic number for iron, an element that could only have been formed under intense pressures and temperatures. Hoyle concluded that iron must have formed within giant stars.[49] From this, in 1945 and 1946, Hoyle constructed the final stages of a star's life cycle. As the star dies, it collapses under its own weight, leading to a stratified chain of fusion reactions: carbon-12 fuses with helium to form oxygen-16; oxygen-16 fuses with helium to produce neon-20, and so on up to iron.[51] There was, however, no known method by which carbon-12 could be produced. Isotopes of beryllium produced via fusion were too unstable to form carbon, and for three helium atoms to form carbon-12 was so unlikely as to have been impossible over the age of the Universe. However, in 1952 the physicist Ed Salpeter showed that a short enough time existed between the formation and the decay of the beryllium isotope that another helium had a small chance to form carbon, but only if their combined mass/energy amounts were equal to that of carbon-12. Hoyle, employing the antropik printsip, showed that it must be so, since he himself was made of carbon, and he existed. When the matter/energy level of carbon-12 was finally determined, it was found to be within a few percent of Hoyle's prediction.[52]


Oq mitti
Asosiy maqola: Oq mitti


The first white dwarf discovered was in the uch yulduzli tizim ning 40 Eridani, which contains the relatively bright asosiy ketma-ketlik Yulduz 40 Eridani A, orbited at a distance by the closer ikkilik tizim of the white dwarf 40 Eridani B va asosiy ketma-ketlik qizil mitti 40 Eridani C. The pair 40 Eridani B/C was discovered by Uilyam Xersel on January 31, 1783;[53], p. 73 it was again observed by Fridrix Georg Georg Wilhelm Struve 1825 yilda va tomonidan Otto Vilgelm fon Struve 1851 yilda.[54][55] In 1910, it was discovered by Genri Norris Rassel, Edvard Charlz Pikering va Uilyamina Fleming that despite being a dim star, 40 Eridani B was of spektral tip A, or white.[56]

White dwarfs were found to be extremely dense soon after their discovery. If a star is in a ikkilik system, as is the case for Sirius B and 40 Eridani B, it is possible to estimate its mass from observations of the binary orbit. This was done for Sirius B by 1910,[57] yielding a mass estimate of 0.94 M☉. (A more modern estimate is 1.00M☉.)[58] Since hotter bodies radiate more than colder ones, a star's surface brightness can be estimated from its samarali sirt harorati, and hence from its spektr. If the star's distance is known, its overall luminosity can also be estimated. Comparison of the two figures yields the star's radius. Reasoning of this sort led to the realization, puzzling to astronomers at the time, that Sirius B and 40 Eridani B must be very dense. Masalan, qachon Ernst Öpik estimated the density of a number of visual binary stars in 1916, he found that 40 Eridani B had a density of over 25,000 times the Quyosh 's, which was so high that he called it "impossible".[59]


Such densities are possible because white dwarf material is not composed of atomlar bound by kimyoviy aloqalar, but rather consists of a plazma of unbound yadrolar va elektronlar. There is therefore no obstacle to placing nuclei closer to each other than elektron orbitallar —the regions occupied by electrons bound to an atom—would normally allow.[60] Eddington, however, wondered what would happen when this plasma cooled and the energy which kept the atoms ionized was no longer present.[61] This paradox was resolved by R. H. Fowler in 1926 by an application of the newly devised kvant mexanikasi. Since electrons obey the Paulini chiqarib tashlash printsipi, no two electrons can occupy the same davlat, and they must obey Fermi-Dirak statistikasi, also introduced in 1926 to determine the statistical distribution of particles which satisfy the Pauli exclusion principle.[62] At zero temperature, therefore, electrons could not all occupy the lowest-energy, or zamin, state; some of them had to occupy higher-energy states, forming a band of lowest-available energy states, the Fermi dengizi. This state of the electrons, called degenerate, meant that a white dwarf could cool to zero temperature and still possess high energy.


Sayyora tumanliklari


Asosiy maqola: Sayyora tumanligi
Planetary nebulae are generally faint objects, and none are visible to the yalang'och ko'z bilan. The first planetary nebula discovered was the Dumbbell tumanligi yulduz turkumida Vulpekula tomonidan kuzatilgan Charlz Messier in 1764 and listed as M27 in his katalog of nebulous objects. To early observers with low-resolution telescopes, M27 and subsequently discovered planetary nebulae somewhat resembled the gas giants, and Uilyam Xersel, kashfiyotchisi Uran, eventually coined the term 'planetary nebula' for them, although, as we now know, they are very different from planets.

The central stars of planetary nebulae are very hot. Ularning yorqinlik, though, is very low, implying that they must be very small. Only once a star has exhausted all its nuclear fuel can it collapse to such a small size, and so planetary nebulae came to be understood as a final stage of stellar evolution. Spectroscopic observations show that all planetary nebulae are expanding, and so the idea arose that planetary nebulae were caused by a star's outer layers being thrown into space at the end of its life.


Lunar origins hypotheses


Advertisement
Asosiy maqola: Geology of the Moon § Formation

Jorj Darvin


Over the centuries, many scientific hypotheses have been advanced concerning the origin of Yerning oyi. One of the earliest was the so-called binary accretion model, which concluded that the Moon accreted from material in orbit around the Earth left over from its formation. Boshqa, the fission model tomonidan ishlab chiqilgan Jorj Darvin (o'g'li Charlz Darvin ), who noted that, as the Moon is gradually receding from the Earth at a rate of about 4 cm per year, so at one point in the distant past it must have been part of the Earth, but was flung outward by the momentum of Earth's then–much faster rotation. This hypothesis is also supported by the fact that the Moon's density, while less than Earth's, is about equal to that of Earth's rocky mantiya, suggesting that, unlike the Earth, it lacks a dense iron core. A third hypothesis, known as the capture model, suggested that the Moon was an independently orbiting body that had been snared into orbit by Earth's gravity.[63]

Apollon missiyalari


However, these hypotheses were all refuted by the late 1960s and early 1970s Apollon lunar missions, which introduced a stream of new scientific evidence; specifically concerning the Moon's composition, its age, and its history. These lines of evidence contradict many predictions made by these earlier models.[63] The rocks brought back from the Moon showed a marked decrease in water relative to rocks elsewhere in the Solar System, and also evidence of an ocean of magma early in its history, indicating that its formation must have produced a great deal of energy. Also, oxygen izotoplar in lunar rocks showed a marked similarity to those on Earth, suggesting that they formed at a similar location in the solar nebula. The capture model fails to explain the similarity in these isotopes (if the Moon had originated in another part of the Solar System, those isotopes would have been different), while the co-accretion model cannot adequately explain the loss of water (if the Moon formed in a similar fashion to the Earth, the amount of water trapped in its mineral structure would also be roughly similar). Conversely, the fission model, while it can account for the similarity in chemical composition and the lack of iron in the Moon, cannot adequately explain its high orbital inclination and, in particular, the large amount of angular momentum in the Earth–Moon system, more than any other planet–satellite pair in the Solar System.[63]

Gigant ta'sir gipotezasi


Asosiy maqola: Gigant ta'sir gipotezasi
For many years after Apollo, the binary accretion model was settled on as the best hypothesis for explaining the Moon's origins, even though it was known to be flawed. Then, at a conference in Kona, Hawaii in 1984, a compromise model was composed that accounted for all of the observed discrepancies. Originally formulated by two independent research groups in 1976, the ulkan ta'sir model supposed that a massive planetary object, the size of Mars, had collided with Earth early in its history. The impact would have melted Earth's crust, and the other planet's heavy core would have sunk inward and merged with Earth's. The superheated vapour produced by the impact would have risen into orbit around the planet, coalescing into the Moon. This explained the lack of water (the vapour cloud was too hot for water to condense), the similarity in composition (since the Moon had formed from part of the Earth), the lower density (since the Moon had formed from the Earth's crust and mantle, rather than its core), and the Moon's unusual orbit (since an oblique strike would have imparted a massive amount of angular momentum to the Earth–Moon system).[63]

Aniq muammolar


However, the giant impact model has been criticised for being too explanatory; it can be expanded to explain any future discoveries and as such, is unfalsifiable. Also, many claim that much of the material from the impactor would have ended up in the Moon, meaning that the isotope levels would be different, but they are not. Also, while some volatile compounds such as water are absent from the Moon's crust, many others, such as manganese, are not.[63]

Download 37.88 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling