Sh. Ismailov, O. Ibrogimov O’zbekiston respublikasi xalq ta’limi vazirligi toshkent
Download 0.51 Mb. Pdf ko'rish
|
tengsizliklar-ii. isbotlashning zamonaviy usullari
- Bu sahifa navigatsiya:
- Lemma (uch vatar haqida)
- Lemma (Abel’ almashtirishi).
- Teorema
. U holda 2 2 2 2 2 1 2 1 2 2 2 ... ...
2 n n a a a b b b P Q + + + + + +
= + 2 2 = 2 2 1 2 2 ...
n x x x + + + ga egamiz. (5) tengsizlikka ko’ra 2 2 1 2 ... n 2 2 x x x + + + ≥ 1 1 2 2 2 1 1 2 2
2 ...
... n n n n n n x x x x x x x x x x x x + + + +
+ + +
+ + + + = 1 1
2 2 2( ... ) n n a b a b a b PQ + + + =
29 ga egamiz. Natijada 1 ≥
1 1 2 2
... n n a b a b a b PQ + + + tengsizlikni hosil qilamiz. Eslatib o’tamiz, tenglik , 1, 2,..., i i P a b i Q = = n n , shart bajarilganda bo’ladi. Bu shart esa
shartiga ekvivalent. , i n i x x + = 1, 2,..., i =
5-misol. (Chebishev tengsizligi). n sondan iborat ikkita a 1 , a 2 , …, a n , b 1 , b 2 , ... , b n ketma-ketliklar berilgan bo’lsin. Faraz qilamiz a 1 ≥ a 2 ≥ ... ≥ a n shart bajarilsin. U holda
+ + + ...
2 1 ⋅ n b b b n + + + ...
2 1 ≤ n b a b a b a n n + + + ...
2 2 1 1 , agar b 1 ≥ b 2 ≥ ... ≥ b n b) n a a a n + + + ...
2 1 ⋅ n b b b n + + + ...
2 1
n b a b a b a n n + + + ...
2 2 1 1 , agar b 1 ≤ b 2
≤ ... ≤ b n Isbot. a) (5) tengsizlikka ko’ra 1 1 2 2
... n n a b a b a b + + + = 1 1
2 2 ...
n n a b a b a b + + + 1 1
2 2 ...
n n a b a b a b + + + ≥ 1 2
2 3 1 ... n a b a b a b + + + 1 1
2 2 ...
n n a b a b a b + + + ≥ 1 3
2 4 2 ... n a b a b a b + + + ……………………………………………. 1 1 2 2
... n n a b a b a b + + + ≥ 1
1 2 1
... n n a b a b a b − + + +
munosabatlarga egamiz, ularni qo’shib 1 1 2 2
( ...
) n n n a b a b a b + + + 1 2 ... ) n a a a + + + ) ≥ ( ⋅ 1 2 ( ...
n b b b + + +
yoki n a a a n + + + ...
2 1 ⋅ n b b b n + + + ...
2 1 ≤ n b a b a b a n n + + + ...
2 2 1 1
30 ni hosil qilamiz. b) holi shunga o’xshash isbotlanadi.
3-BOB. KARAMATA TENGSIZLIGI. Ta’rif: 1 2 ( , ,..., ) n x x x x =
1 2
n y y y y = n-liklar quyidagi shartlarni qanoatlantirsin: 1.
1 2 ... n x x x ≥ ≥ ≥ va 1 2 ... n y y y ≥ ≥ ≥ 2. 1 1 , 1,...,
1 k k i i i i x y k n = − ≥ = − ∑ ∑
n i i i i i i ,
x y = = = ∑ ∑ 1 , ya’ni
1 1 1 2 1 2 1 2 1 1 2 1 2 1 2
.............. ........................ ....................................... ...
... ...
...
n n n x y x x y y x x x y y y x x x y y − − ≥ + ≥ + + + +
≥ + + +
+ + +
= + + + n y
1 2 ( , ,..., ) n x x x x = n-lik 1 2 ( , ,..., ) n y y y y =
munosabat
yoki
kabi yoziladi. y x ≺
1.
( ) 1 1 1 1 1 1 ,...
,... ,0 ... , ,0,...0 1,0,...0 . 1 1
n n n n ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜
⎟ ⎜ ⎟ − − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ≺ ≺ ≺ ≺
2. Agar va bo’lsa, u holda m l ≥ 0 c ≥ марта марта ,...,
,0,...,0 ,..., ,0,...,0 l m l l c c c c m m ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ≺
munosabat o’rinli. 3. Agar a i ≥0 va
bo’lsa, u holda 1 1 n i i a = = ∑ ( ) ( ) 1 1 1 ,...,
,..., 1,0,...,0 n a a n n ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ≺ ≺ munosabat o’rinli.
32
4. Agar bo’lsa, u holda 0
≥ 1 1 1 1 1 1 ( ,..., ) ( ,..., ) n n n n i i i i x c x c x x x nc x = = + + + ∑ ∑ ≺ munosabat o’rinli. 5. Agar
+ + + = = = = ... ... 2 1 2 1 bo’lsa bo’ladi. ) ,..., , ( ) ,..., , ( 2 1 2 1 n n y y y x x x 6. , ,
α β γ - uchburchak burchaklari bo’lsin, u holda , ,
( , , ) ( ,0,0) 3 3 3
π π π α β γ
π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ≺ ≺ munosabat; B) o’tkir burchakli uchburchaklar uchun , ,
( , , ) , ,0
3 3 3 2 2
π π π π π
α β γ ⎛ ⎞ ⎛ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ≺ ≺ ⎞ munosabat; C) o’tmas burchakli uchburchaklar uchun ( ) , , ( , , )
, ,0 3 3 3
π π π α β γ
π π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ≺ ≺ munosabat o’rinli.
.
- qavariq funksiya bo’lsin. U holda uchun har qanday uchun
z y z < < ( )
( ) ( )
( ) ( )
( ) f y f z f x f x f x f y y z x z x y − − − ≤ ≤ − − − qo’shtengsizlik o’rinli. Isbot:
- qavariq funksiya bo’lganligi uchun f( λ
λ )z)
≤ λ (x)+(1– λ )f(z)
33
tengsizlik bajariladi, bu yerda (0,1)
λ ∈
y z x z λ − = − deb olamiz va soddalashtirishlardan so’ng yuqoridagi tengsizlik (x–z)f(y) ≤(x–y)f(z)+(y–z)f(x) tengsizlikka olib kelinadi. Bu tengsizlik esa ( ) ( )
( ) ( )
( ) ( )
f y f z f x f x f x f y y z x z x y − − − ≤ ≤ − − − ikkala ham tengsizlikka tengkuchli. Natija. Qavariq
f funksiya berilgan bo’lsin. U holda uchun har qanday 1 2
2 1 1 2 , , , 2
x y y x y x y ≥ ≥ ≠ ≠ uchun 1 1 2 1 1 2 2 ( )
( ) ( )
( ) 2
f y f x f y x y x y − − ≥ − − tengsizlik bajariladi. Lemma (Abel’ almashtirishi). 1
k i i A a = = ∑ bo’lsa, u holda tenglik o’rinli. 1 1 1 1 ( ) n n k k k k k n n k k a b A b b A b − + = − = − + ∑ ∑ Isbot.
1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 1 1 2 2 2 3 1 1 ...
( ) ... ( ) ( ) ( ) ( ) ... ( ) . n n n n n n n n n n n n n n n a b a b a b a b Ab A A b A A b A A b A b b A b b A b b A b − − − − − − − − + + +
+ = + − + +
− + − = − + − + +
− + = Teorema (Karamata tengsizligi) . Qavariq (mos ravishda botiq) f funksiya berilgan bo’lsin. Agar x ≺
1 1
( ) n n i i i i f x f = = ≤ ∑ ∑ y (1) ( 1 1 ( )
( ) n n i i i i f x f = = ≥ ∑ ∑ y ). (1’)
34 tengsizlik bajariladi. Isbot: Qavariq f funksiya holini qarash etarli. Umumiylikka putur etkazmasdan k k x y ≠ deb hisoblashimiz mumkin. ( ) ( )
k k k k k f y f x D y x − = − , 1 k k i i X x = = ∑ , 1 k k i Y = = i y ∑ belgilashlarni kiritamiz. U holda .
, k k n Y X Y X ≥ = n Uch vatar haqida lemma natijasiga ko’ra 1
+ ≥ . Demak,
. 1 1 1 ( ) ( ) ( )
k k k k n n k Y X D D X Y D − + = − ⋅ − + − ≥ ∑ 0 0 Abel’ almashtirishini qo’llab, 1 (
n k k k k y x D = − ⋅ ≥ ∑ ni hosil qilamiz. Teorema isbot bo’ldi. Eslatma 1. Isbot qilingan tengsizlikka Karamata nomi berilishi unchalik to’g’ri emas. 1923 yilda Shur bu tengsizlikni majorlash shartini boshqacharok ifodalab isbotladi. 1920 yilda Xardi, Littlvud va Polia bu tengsizlikni ifodaladilar va uning uzluksiz analogini isbotladilar. 3 yildan keyin Karamata bu tengsizlikni umumiy holda isbotladi. Karamata tengsizligidan foydalangan holda isbotlash mumkin bo’lgan ikkita tengsizliklarni ko’rib chiqamiz. Misollar. 1. (Yensen tengsizligi). Agar f -qavariq funksiya bo’lsa, 1 1
n n i i i i f x x f n n = = ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ≥ ⎜ ⎟ ⎝ ⎠ ∑ ∑ tengsizlik o’rinli bo’ladi. Isbot.
+ + + = = = = ... ... 2 1 2 1 deb olamiz. bo’lgani uchun Karamata tengsizligidan bevosita Yensen tengsizligi kelib chiqadi. ) ,...,
, ( ) ,..., , ( 2 1 2 1 n n y y y x x x
35 2. Ixtiyoriy musbat lar uchun , ,
1 1 1 1 1 2 2 2 a b b c c a a b c + + ≤ + + + + + 1 . Isbot. ( ga egamiz. Karamata tengsizligini 2 ,2 ,2 ) ( , ,
a b c a b a c b c + + + 1 ( ) f x x =
funksiya uchun qo’llash etarli.
Download 0.51 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling