Simvollar bilan ishlash Greek Letters
Download 344.63 Kb.
|
Simvollar bilan ishlash
Simvollar bilan ishlash Greek Letters Greek letters are commonly used in both maths and physics. They can be categorized as lowercase or letters. Lowercase Greek letters in symbols in LaTeX are shown below: Uppercase Greek letters are shown in the table below: Operator Symbols The list of operator symbols and their corresponding commands is shown below: Relations Symbols Some symbols in LaTeX denote the mathematical relationship between the terms that precede and follow them. These symbols are shown below: In some cases, you may need to show the negation of the relationships the above symbols represent. You can do this easily by adding “n” between “\” and the symbol term. For example, you can show the “not equal” symbol by using the command \nequal, which displays . You should note that while LaTeX displays the majority of symbols using the commands mentioned above, simple symbols such as “>”,”<”, and “=” must be entered using the keyboard. Arrow Symbols The various arrow symbols in LaTeX are shown in the table below: Accents LaTeX also supports many different types of accents symbols. These are shown in the table below: Dots LaTeX supports various dot symbols. These are displayed in the table below: Bracketing Symbols Bracketing symbols are useful in mathematical formulas where you need to enclose expressions. The commonly used bracketing symbols in LaTeX are shown in the table below: Topshiriq \[\left\{\begin{array}{l} {\frac{d\bar{u}}{dt} =\gamma \left(t\right)\cdot \bar{u}^{q_{1} } \bar{v}^{r_{1} } } \\ {\frac{d\bar{v}}{dt} =\gamma \left(t\right)\cdot \bar{u}^{q_{2} } \bar{v}^{r_{2} } } \end{array}\right. \Leftrightarrow \left\{\begin{array}{l} {\bar{u}\left(t\right)=A_{1} \left[T_{0} +\int _{0}^{t}\gamma \left(\eta \right)d\eta \right]^{\alpha _{1} } } \\ {\bar{v}\left(t\right)=A_{2} \left[T_{0} +\int _{0}^{t}\gamma \left(\eta \right)d\eta \right]^{\alpha _{2} } } \end{array}\right. |\, \left\{\begin{array}{l} {\alpha _{1} =\frac{1-r_{2} +r_{1} }{\left(q_{1} -1\right)\left(r_{2} -1\right)-r_{1} q_{2} } } \\ {\alpha _{2} =\frac{1-q_{1} +q_{2} }{\left(q_{1} -1\right)\left(r_{2} -1\right)-r_{1} q_{2} } } \end{array}\right. \] \begin{eqnarray} \label{eqno(1)} \left\{\begin{array}{l} {\frac{\partial u}{\partial t} =\nabla \left(\sigma ^{m_{1} -1} \left|\nabla u^{k} \right|^{p-2} \nabla u\right)-\nabla \left(\ell (t)u\right)-\wp _{1} (t)u} \\ {\frac{\partial \sigma }{\partial t} =\nabla \left(u^{m_{2} -1} \left|\nabla \sigma ^{k} \right|^{p-2} \nabla \sigma \right)-\nabla \left(\ell (t)\sigma \right)-\wp _{2} (t)\sigma } \end{array}\right. \end{eqnarray} \begin{eqnarray} \label{eqno(2)} u|_{t=0} =u_{0} \left(x\right),\, \sigma |_{t=0} =\sigma _{0} \left(x\right) \end{eqnarray} Download 344.63 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling