Sorption of Cu(II), Zn(II) and Pb(II) Ions in an Aqueous Solution on the pvc-acetylacetone Composites Elzbieta Radzyminska-Lenarcik and Katarzyna Witt
Download 1.63 Mb. Pdf ko'rish
|
Sorption of CuII ZnII and PbII ions in an aqueous
Environ. Sci. Health. A 2015, 50, 677–718, doi:10.1080/10934529.2015.1011964.
33. Pagnanelli, F.; Mainelli, S.; Veglio, F.; Toro, L. Heavy metal removal by olive pomace: Biosorbent characterisation and equilibrium modelling. Chem. Eng. Sci. 2003, 58, 4709–4717, doi:10.1016/j.ces.2003.08.001. Polymers 2019, 11, 513 15 of 16 34. Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456, doi:10.1016/j.carbpol.2010.11.004. 35. Wan Ngah, W.S.; Endud, C.S.; Mayanar, R. Removal of copper (II) ions from aqueous solution onto chi- tosan and cross-linked chitosan beads. React. Funct. Polym. 2002, 50, 181–190, doi:10.1016/S1381- 5148(01)00113-4. 36. Ren, Y.; Abbood, H.A.; He, F.; Peng, H.; Huang, K. Magnetic EDTA-modified chitosan/SiO 2 /Fe 3 O 4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311, doi:10.1016/j.cej.2013.04.059. 37. Chen, A.-H.; Liu, S.-Ch.; Chen, C.-Y.; Chen, C.–Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191, doi:10.1016/j.jhazmat.2007.10.009. 38. Sargin, I.; Arslan, G.; Kaya, M. Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React. Funct. Polym. 2016, 98, 38–47, doi:10.1016/j.reactfunctpolym.2015.11.007. 39. Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27, doi:10.1016/S1381-5148(00)00038-9. 40. Demey, H.; Lapo, B.; Ruiz, M.; Fortuny, A.; Marchand, M.; Sastre, A., M. Neodymium Recovery by Chi- tosan/Iron(III) Hydroxide [ChiFer(III)] Sorbent Material: Batch and Column Systems. Polymers 2018, 10, 204, doi:10.3390/polym10020204. 41. Al-Qodah, Z. Biosorption of heavy metals ions from aqueous solutions by activated sludge. Desalination 2006, 196, 164−176, doi:10.1016/j.desal.2005.12.012. 42. Fourest, E.; Roux, J.C. Heavy metal biosorption by fungal mycelial by-products: Mechanism and influence of pH. Appl. Microbiol. Biotechnol. 1992, 37, 399–403, doi:10.1007/BF00211001. 43. Girgis, B.S.; El-Hendawy, A.-N.A. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Micropor. Mesopor. Mat. 2002, 52, 105–117, doi:10.1016/S1387-1811(01)00481-4. 44. Gupta, S.; Kumar, D.; Gaur, J.P. Kinetic and isotherm modeling of lead (II) sorption onto some waste plant materials. Chem. Eng. J. 2009, 148, 226−233. 45. Han, R.; Zhang, J.; Zou, W.; Shi, J.; Liu, H. Equilibrium biosorption isotherm for lead ion on chaff. J. Hazard. Mater. 2005, 125, 266−271, doi:10.1016/j.jhazmat.2005.05.031. 46. Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J. Hazard. Mater. 2008, 150, 322–327, doi:10.1016/j.jhazmat.2007.04.118. 47. Low, K.S.; Lee, C.K.; Liew, S.C. Sorption of cadmium and lead from aqueous solution by spent grain. Process Biochem. 2000, 36, 59−64, doi:10.1016/S0032-9592(00)00177-1. 48. Meena, A.K.; Kadirvelu, K.; Mishraa, G.K.; Rajagopal, C.; Nagar, P.N. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 2008, 150, 619−625, doi:10.1016/j.jhazmat.2007.05.011. 49. Nadeema, R.; Hanif, M.S.; Shaheen, F.; Perveen, S.; Zafar, M.N.; Tahira, I. Physical and chemical modification of distillery sludge for Pb(II) biosorption. J. Hazard. Mater. 2008, 150, 335–342, doi:10.1016/j.jhazmat.2007.04.110. 50. Yao, Z.-Y.; Qi, J.-H.; Wang, L.-H. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J. Hazard. Mater, 2010, 174, 137–143, doi:10.1016/j.jhazmat.2009.09.027. 51. Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013, 263, 322–333, doi:10.1016/j.jhazmat.2013.07.071. 52. Petrella, A.; Spasiano, D.; Acquafredda, P.; De Vietro, N.; Ranieri, E.; Cosma, P.; Rizzi, V.; Petruzzelli, V.; Petruzzelli, D. Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process Saf. Environ. Prot. 2018, 114, 79–90, doi:10.1016/j.psep.2017.12.010. 53. Wang, B.; Zhou, Y.; Li, L.; Xu, H.; Sun, Y.; Wang, Y. Novel synthesis of cyano-functionalized mesoporous silica nanospheres (MSN) from coal fly ash for removal of toxic metals from wastewater. J. Hazard. Mat. 2018, 345, 76–86, doi:10.1016/j.jhazmat.2017.10.063. Polymers 2019, 11, 513 16 of 16 54. Demey, H.; Melkior, T.; Chatroux, A.; Attar, K.; Thiery, S.; Miller, H.; Grateau, M.; Sastre, A.M.; Marchand, M. Evaluation of torrefied Poplar-biomass a low-cost sorbent for Pb(II) and Tb(III) removal from aqueous solutions and energy co-generation. Chem. Eng. J. 2019, 361, 839–852, doi:10.1016/j.cej.2018.12.148. 55. Witt, K.; Radzyminska-Lenarcik, E.; Kosciuszko, A.; Gierszewska, M.; Ziuziakowski, K. The influence of the morphology and mechanical properties of polymer inclusion membranes (PIMs) on zinc ion separation from aqueous solutions. Polymers 2018, 10, 134–147, doi:10.3390/polym10020134. 56. Radzyminska-Lenarcik, E.; Witt, K.; Bożejewicz, D. Selective transport of copper(II) ions across polymer inclusion membrane with aromatic β–diketones as carriers. Physicochem. Probl. Miner. Process. 2018, 54, 741– 750, doi:10.5277/ppmp1868. 57. Witt, K.; Radzyminska-Lenarcik, E.; Urbaniak, W. Selective transport of zinc ions through a novel polymer inclusion membranes (PIMs) containing β-diketone derivatives as a carrier reagents. Sep. Sci. Technol. 2016, 51, 2620–2627, doi:10.1080/01496395.2016.1167084. 58. Witt, K.; Radzyminska-Lenarcik, E. The recovery and the separation of metal ions from galvanic wastewaters. Desalin. Water Treat. 2018, 128, 148–154, doi:10.5004/dwt.2018.22629. 59. Skotnicki, T.; Kazimierska, A.; Ziuziakowski, K.; Witt, K.; Urbaniak, W.; Radzymińska-Lenarcik, E.; Skórczewska, K.; Lewandowski, K. Nowy Kompozyt Polimerowy na Bazie Polichlorku Winylu i Sposób Jego Otrzymywania. Polish patent application P.425352, 24 April 2018. 60. Stary, J.; Liljenzin, J.O. Critical evaluation of equilibrium constants involving acetylacetone and its metal chelates. Pure Appl. Chem. 1982, 54, 2557–2592, doi:10.1351/pac198254122557. 61. Boyd, G.E.; Adamson, A.W.; Myers, L.S., Jr. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848, doi:10.1021/ja01203a066. 62. Reichenberg, D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 1953, 75, 589–597, doi:10.1021/ja01099a022. 63. Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mat. 2003, B97, 219–243, doi:10.1016/S0304-3894(02)00263-7. 64. Şölener, M.; Tunali, S.; Özcan, A.S.; Gedikbey, T. Adsorption characteristics of lead(II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) composite from aqueous solutions. Desalination 2008, 223, 308–322, doi:10.1016/j.desal.2007.01.221. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Download 1.63 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling