Specializing in the scientific study of the


Download 126.01 Kb.
bet1/3
Sana18.06.2023
Hajmi126.01 Kb.
#1590315
  1   2   3
Bog'liq
Mineralogy


Mineralogy is a subject of geology specializing in the scientific study of the chemistrycrystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the processes of mineral origin and formation, classification of minerals, their geographical distribution, as well as their utilization.
History[edit]

Page from Treatise on mineralogy by Friedrich Mohs (1825)

The Moon Mineralogy Mapper, a spectrometer that mapped the lunar surface[3]
Main article: History of mineralogy
Early writing on mineralogy, especially on gemstones, comes from ancient Babylonia, the ancient Greco-Roman world, ancient and medieval China, and Sanskrit texts from ancient India and the ancient Islamic world.[4] Books on the subject included the Naturalis Historia of Pliny the Elder, which not only described many different minerals but also explained many of their properties, and Kitab al Jawahir (Book of Precious Stones) by Persian scientist Al-Biruni. The German Renaissance specialist Georgius Agricola wrote works such as De re metallica (On Metals, 1556) and De Natura Fossilium (On the Nature of Rocks, 1546) which began the scientific approach to the subject. Systematic scientific studies of minerals and rocks developed in post-Renaissance Europe.[4] The modern study of mineralogy was founded on the principles of crystallography (the origins of geometric crystallography, itself, can be traced back to the mineralogy practiced in the eighteenth and nineteenth centuries) and to the microscopic study of rock sections with the invention of the microscope in the 17th century.[4]
Nicholas Steno first observed the law of constancy of interfacial angles (also known as the first law of crystallography) in quartz crystals in 1669.[5]: 4  This was later generalized and established experimentally by Jean-Baptiste L. Romé de l'Islee in 1783.[6] René Just Haüy, the "father of modern crystallography", showed that crystals are periodic and established that the orientations of crystal faces can be expressed in terms of rational numbers, as later encoded in the Miller indices.[5]: 4  In 1814, Jöns Jacob Berzelius introduced a classification of minerals based on their chemistry rather than their crystal structure.[7] William Nicol developed the Nicol prism, which polarizes light, in 1827–1828 while studying fossilized wood; Henry Clifton Sorby showed that thin sections of minerals could be identified by their optical properties using a polarizing microscope.[5]: 4 [7]: 15  James D. Dana published his first edition of A System of Mineralogy in 1837, and in a later edition introduced a chemical classification that is still the standard.[5]: 4 [7]: 15  X-ray diffraction was demonstrated by Max von Laue in 1912, and developed into a tool for analyzing the crystal structure of minerals by the father/son team of William Henry Bragg and William Lawrence Bragg.
More recently, driven by advances in experimental technique (such as neutron diffraction) and available computational power, the latter of which has enabled extremely accurate atomic-scale simulations of the behaviour of crystals, the science has branched out to consider more general problems in the fields of inorganic chemistry and solid-state physics. It, however, retains a focus on the crystal structures commonly encountered in rock-forming minerals (such as the perovskitesclay minerals and framework silicates). In particular, the field has made great advances in the understanding of the relationship between the atomic-scale structure of minerals and their function; in nature, prominent examples would be accurate measurement and prediction of the elastic properties of minerals, which has led to new insight into seismological behaviour of rocks and depth-related discontinuities in seismograms of the Earth's mantle. To this end, in their focus on the connection between atomic-scale phenomena and macroscopic properties, the mineral sciences (as they are now commonly known) display perhaps more of an overlap with materials science than any other discipline.
Physical properties[edit]

Calcite is a carbonate mineral (CaCO3) with a rhombohedral crystal structure.

Aragonite is an orthorhombic polymorph of calcite.
An initial step in identifying a mineral is to examine its physical properties, many of which can be measured on a hand sample. These can be classified into density (often given as specific gravity); measures of mechanical cohesion (hardnesstenacitycleavagefractureparting); macroscopic visual properties (luster, color, streakluminescencediaphaneity); magnetic and electric properties; radioactivity and solubility in hydrogen chloride (HCl)]

Download 126.01 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling