Stata program for Probit/Logit Models
STATA Results for Duration Data
Download 230.5 Kb.
|
STATA Programs
STATA Results for Duration Data
surv_data.log ------------------------------------------------------------------------------ log: c:\bill\jpsm\surv_data.log log type: text opened on: 7 Nov 2004, 06:26:56 . * load up sas data set; . use c:\bill\jpsm\surv_data; . * get contents of data file; . desc; Contains data from c:\bill\jpsm\surv_data.dta obs: 26,654 vars: 7 2 Nov 2004 10:59 size: 533,080 (97.5% of memory free) ------------------------------------------------------------------------------ > - storage display value variable name type format label variable label ------------------------------------------------------------------------------ > - age_s_yrs byte %9.0g age in years at the time of survey max_mths byte %9.0g max months of followup black byte %9.0g dummy variable, =1 if black hispanic byte %9.0g dummy variable, =1 hispanic income float %9.0g =1 if <10K, 2 if 10-20, 3 if 20-30, 4 if 30-40, 5 if 40+ educ float %9.0g =1 if <9, =2 if 9-11, =3 if 12-15, =4 if 16+ diedin5 float %9.0g died with 5 year followup ------------------------------------------------------------------------------ > - Sorted by: . * get summary statistics; . sum; Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- age_s_yrs | 26654 59.42586 5.962435 50 70 max_mths | 26654 56.49077 11.15384 0 60 black | 26654 .0928566 .2902368 0 1 hispanic | 26654 .0454716 .20834 0 1 income | 26654 3.592181 1.327325 1 5 -------------+-------------------------------------------------------- educ | 26654 2.766677 .961846 1 4 diedin5 | 26654 .1226082 .3279931 0 1 . * define the duration data in the analysis; . stset max_mths, failure(diedin5); failure event: diedin5 != 0 & diedin5 < . obs. time interval: (0, max_mths] exit on or before: failure ------------------------------------------------------------------------------ 26654 total obs. 23 obs. end on or before enter() ------------------------------------------------------------------------------ 26631 obs. remaining, representing 3245 failures in single record/single failure data 1505705 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 60 . * list the kaplan meier survivor function; . sts list; failure _d: diedin5 analysis time _t: max_mths Beg. Net Survivor Std. Time Total Fail Lost Function Error [95% Conf. Int. > ] ------------------------------------------------------------------------------ > - 1 26631 38 0 0.9986 0.0002 0.9980 0.999 > 0 2 26593 42 0 0.9970 0.0003 0.9963 0.997 > 6 3 26551 40 0 0.9955 0.0004 0.9946 0.996 > 2 4 26511 49 0 0.9937 0.0005 0.9926 0.994 > 5 5 26462 50 0 0.9918 0.0006 0.9906 0.992 > 8 6 26412 61 0 0.9895 0.0006 0.9882 0.990 > 6 7 26351 45 0 0.9878 0.0007 0.9864 0.989 > 0 8 26306 60 0 0.9855 0.0007 0.9840 0.986 > 9 9 26246 46 0 0.9838 0.0008 0.9822 0.985 > 3 10 26200 42 0 0.9822 0.0008 0.9806 0.983 > 8 11 26158 52 0 0.9803 0.0009 0.9785 0.981 > 9 12 26106 56 0 0.9782 0.0009 0.9764 0.979 > 9 13 26050 53 0 0.9762 0.0009 0.9743 0.978 > 0 14 25997 64 0 0.9738 0.0010 0.9718 0.975 > 6 15 25933 48 0 0.9720 0.0010 0.9699 0.973 > 9 16 25885 49 0 0.9701 0.0010 0.9680 0.972 > 1 17 25836 54 0 0.9681 0.0011 0.9659 0.970 > 2 18 25782 46 0 0.9664 0.0011 0.9642 0.968 > 5 19 25736 51 0 0.9645 0.0011 0.9622 0.966 > 6 20 25685 38 0 0.9631 0.0012 0.9607 0.965 > 2 21 25647 56 0 0.9609 0.0012 0.9586 0.963 > 2 22 25591 51 0 0.9590 0.0012 0.9566 0.961 > 3 23 25540 48 0 0.9572 0.0012 0.9547 0.959 > 6 24 25492 51 0 0.9553 0.0013 0.9528 0.957 > 7 25 25441 59 0 0.9531 0.0013 0.9505 0.955 > 6 26 25382 58 0 0.9509 0.0013 0.9483 0.953 > 5 27 25324 63 0 0.9486 0.0014 0.9458 0.951 > 1 28 25261 50 0 0.9467 0.0014 0.9439 0.949 > 3 29 25211 50 0 0.9448 0.0014 0.9420 0.947 > 5 30 25161 52 0 0.9428 0.0014 0.9400 0.945 > 6 31 25109 60 0 0.9406 0.0014 0.9377 0.943 > 4 32 25049 52 0 0.9386 0.0015 0.9357 0.941 > 5 33 24997 54 0 0.9366 0.0015 0.9336 0.939 > 5 34 24943 56 0 0.9345 0.0015 0.9315 0.937 > 4 35 24887 66 0 0.9320 0.0015 0.9289 0.935 > 0 36 24821 70 0 0.9294 0.0016 0.9263 0.932 > 4 37 24751 45 0 0.9277 0.0016 0.9245 0.930 > 8 38 24706 59 0 0.9255 0.0016 0.9223 0.928 > 6 39 24647 54 0 0.9235 0.0016 0.9202 0.926 > 6 40 24593 48 0 0.9217 0.0016 0.9184 0.924 > 8 41 24545 61 0 0.9194 0.0017 0.9160 0.922 > 6 42 24484 63 0 0.9170 0.0017 0.9136 0.920 > 3 43 24421 56 0 0.9149 0.0017 0.9115 0.918 > 2 44 24365 52 0 0.9130 0.0017 0.9095 0.916 > 3 45 24313 60 0 0.9107 0.0017 0.9072 0.914 > 1 46 24253 56 0 0.9086 0.0018 0.9051 0.912 > 0 47 24197 68 0 0.9060 0.0018 0.9025 0.909 > 5 48 24129 59 0 0.9038 0.0018 0.9002 0.907 > 3 49 24070 57 0 0.9017 0.0018 0.8981 0.905 > 2 50 24013 57 0 0.8996 0.0018 0.8959 0.903 > 1 51 23956 66 0 0.8971 0.0019 0.8934 0.900 > 7 52 23890 57 0 0.8949 0.0019 0.8912 0.898 > 6 53 23833 50 0 0.8931 0.0019 0.8893 0.896 > 7 54 23783 53 0 0.8911 0.0019 0.8873 0.894 > 7 55 23730 64 0 0.8887 0.0019 0.8848 0.892 > 4 56 23666 55 0 0.8866 0.0019 0.8827 0.890 > 3 57 23611 65 0 0.8842 0.0020 0.8803 0.887 > 9 58 23546 66 0 0.8817 0.0020 0.8777 0.885 > 5 59 23480 44 0 0.8800 0.0020 0.8761 0.883 > 9 60 23436 50 2.3e+04 0.8781 0.0020 0.8742 0.8 > 820 ------------------------------------------------------------------------------ > - . * you can graph the functions as well; . * output the graphs to a file; . sts graph; failure _d: diedin5 analysis time _t: max_mths . graph save c:\bill\jpsm\graph1.gph, replace; (file c:\bill\jpsm\graph1.gph saved) . * you can draw graphs for various subgroups; . * output the graphs to a file; . sts graph, by(educ); failure _d: diedin5 analysis time _t: max_mths . graph save c:\bill\jpsm\graph2.gph, replace; (file c:\bill\jpsm\graph2.gph saved) . * run a duration model where the hazard varies across; . * people. first, ask stata to print out the raw; . * coefficients (nohr option), then do default; . * show weibull first, then exponential; . * first, construct dummies for the income and; . * education categories. in the regression statement; . * _Ie star include all variables beginning with _Ie; . * and _Ii star includes all variables starting with; . * _Ii; . xi i.income i.educ; i.income _Iincome_1-5 (naturally coded; _Iincome_1 omitted) i.educ _Ieduc_1-4 (naturally coded; _Ieduc_1 omitted) . streg age_s_yrs black hispanic _Ie* _Ii*, d(weibull) nohr; failure _d: diedin5 analysis time _t: max_mths Fitting constant-only model: Iteration 0: log likelihood = -12759.823 Iteration 1: log likelihood = -12723.121 Iteration 2: log likelihood = -12722.924 Iteration 3: log likelihood = -12722.924 Fitting full model: Iteration 0: log likelihood = -12722.924 Iteration 1: log likelihood = -12454.553 Iteration 2: log likelihood = -12425.111 Iteration 3: log likelihood = -12425.055 Iteration 4: log likelihood = -12425.055 Weibull regression -- log relative-hazard form No. of subjects = 26631 Number of obs = 26631 No. of failures = 3245 Time at risk = 1505705 LR chi2(10) = 595.74 Log likelihood = -12425.055 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age_s_yrs | .0452588 .0031592 14.33 0.000 .0390669 .0514508 black | .4770152 .0511122 9.33 0.000 .3768371 .5771932 hispanic | .1333552 .082156 1.62 0.105 -.0276676 .294378 _Ieduc_2 | .0093353 .0591918 0.16 0.875 -.1066786 .1253492 _Ieduc_3 | -.072163 .0503131 -1.43 0.151 -.1707748 .0264488 _Ieduc_4 | -.1301173 .0657131 -1.98 0.048 -.2589126 -.0013221 _Iincome_2 | -.1867752 .0650604 -2.87 0.004 -.3142914 -.0592591 _Iincome_3 | -.3268927 .0688635 -4.75 0.000 -.4618627 -.1919227 _Iincome_4 | -.5166137 .0769202 -6.72 0.000 -.6673747 -.3658528 _Iincome_5 | -.5425447 .0722025 -7.51 0.000 -.684059 -.4010303 _cons | -9.201724 .2266475 -40.60 0.000 -9.645945 -8.757503 -------------+---------------------------------------------------------------- /ln_p | .1585315 .0172241 9.20 0.000 .1247729 .1922901 -------------+---------------------------------------------------------------- p | 1.171789 .020183 1.132891 1.212022 1/p | .8533961 .014699 .8250675 .8826974 ------------------------------------------------------------------------------ . * now get the hazard ratios where all coefs are raised to; . * exp(b1); . streg age_s_yrs black hispanic _Ie* _Ii*, d(weibull); failure _d: diedin5 analysis time _t: max_mths Fitting constant-only model: Iteration 0: log likelihood = -12759.823 Iteration 1: log likelihood = -12723.121 Iteration 2: log likelihood = -12722.924 Iteration 3: log likelihood = -12722.924 Fitting full model: Iteration 0: log likelihood = -12722.924 Iteration 1: log likelihood = -12454.553 Iteration 2: log likelihood = -12425.111 Iteration 3: log likelihood = -12425.055 Iteration 4: log likelihood = -12425.055 Weibull regression -- log relative-hazard form No. of subjects = 26631 Number of obs = 26631 No. of failures = 3245 Time at risk = 1505705 LR chi2(10) = 595.74 Log likelihood = -12425.055 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age_s_yrs | 1.046299 .0033055 14.33 0.000 1.03984 1.052797 black | 1.611258 .082355 9.33 0.000 1.457667 1.781032 hispanic | 1.142656 .093876 1.62 0.105 .9727116 1.342291 _Ieduc_2 | 1.009379 .059747 0.16 0.875 .8988145 1.133544 _Ieduc_3 | .9303792 .0468103 -1.43 0.151 .8430114 1.026802 _Ieduc_4 | .8779924 .0576956 -1.98 0.048 .7718905 .9986788 _Iincome_2 | .8296302 .0539761 -2.87 0.004 .7303062 .9424625 _Iincome_3 | .7211611 .0496617 -4.75 0.000 .6301089 .8253706 _Iincome_4 | .5965372 .0458858 -6.72 0.000 .5130537 .6936049 _Iincome_5 | .5812672 .041969 -7.51 0.000 .5045648 .6696297 -------------+---------------------------------------------------------------- /ln_p | .1585315 .0172241 9.20 0.000 .1247729 .1922901 -------------+---------------------------------------------------------------- p | 1.171789 .020183 1.132891 1.212022 1/p | .8533961 .014699 .8250675 .8826974 ------------------------------------------------------------------------------ . * for compairson purposes, look at results from an exponential; . streg age_s_yrs black hispanic _Ie* _Ii*, d(exp) nohr; failure _d: diedin5 analysis time _t: max_mths Iteration 0: log likelihood = -12759.823 Iteration 1: log likelihood = -12493.913 Iteration 2: log likelihood = -12465.272 Iteration 3: log likelihood = -12465.218 Iteration 4: log likelihood = -12465.218 Exponential regression -- log relative-hazard form No. of subjects = 26631 Number of obs = 26631 No. of failures = 3245 Time at risk = 1505705 LR chi2(10) = 589.21 Log likelihood = -12465.218 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age_s_yrs | .0450058 .0031587 14.25 0.000 .0388149 .0511968 black | .4739259 .0511077 9.27 0.000 .3737567 .574095 hispanic | .1325028 .0821549 1.61 0.107 -.0285178 .2935235 _Ieduc_2 | .0094567 .0591916 0.16 0.873 -.1065568 .1254701 _Ieduc_3 | -.071804 .0503096 -1.43 0.154 -.170409 .0268011 _Ieduc_4 | -.1293206 .0657092 -1.97 0.049 -.2581081 -.000533 _Iincome_2 | -.1855024 .0650573 -2.85 0.004 -.3130123 -.0579925 _Iincome_3 | -.3244382 .0688567 -4.71 0.000 -.4593948 -.1894816 _Iincome_4 | -.5134143 .0769126 -6.68 0.000 -.6641602 -.3626684 _Iincome_5 | -.5391811 .072196 -7.47 0.000 -.6806827 -.3976795 _cons | -8.491069 .2107085 -40.30 0.000 -8.90405 -8.078088 ------------------------------------------------------------------------------ . streg age_s_yrs black hispanic _Ie* _Ii*, d(exp); failure _d: diedin5 analysis time _t: max_mths Iteration 0: log likelihood = -12759.823 Iteration 1: log likelihood = -12493.913 Iteration 2: log likelihood = -12465.272 Iteration 3: log likelihood = -12465.218 Iteration 4: log likelihood = -12465.218 Exponential regression -- log relative-hazard form No. of subjects = 26631 Number of obs = 26631 No. of failures = 3245 Time at risk = 1505705 LR chi2(10) = 589.21 Log likelihood = -12465.218 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age_s_yrs | 1.046034 .0033041 14.25 0.000 1.039578 1.05253 black | 1.606288 .0820936 9.27 0.000 1.453184 1.775523 hispanic | 1.141682 .0937948 1.61 0.107 .971885 1.341145 _Ieduc_2 | 1.009502 .059754 0.16 0.873 .898924 1.133681 _Ieduc_3 | .9307133 .0468238 -1.43 0.154 .8433198 1.027163 _Ieduc_4 | .8786922 .0577381 -1.97 0.049 .7725117 .9994672 _Iincome_2 | .8306869 .0540422 -2.85 0.004 .731241 .943657 _Iincome_3 | .7229334 .0497788 -4.71 0.000 .6316658 .827388 _Iincome_4 | .5984488 .0460282 -6.68 0.000 .5147056 .6958171 _Iincome_5 | .5832257 .0421066 -7.47 0.000 .5062713 .6718773 ------------------------------------------------------------------------------ . log close; log: c:\bill\jpsm\surv_data.log log type: text closed on: 7 Nov 2004, 06:27:08 ------------------------------------------------------------------------------ Download 230.5 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling