The Fabric of Reality David Deutch
particular, any genuine universal computer must itself be physically
Download 1.42 Mb. Pdf ko'rish
|
The Fabric of Reality
particular, any genuine universal computer must itself be physically realizable. This leads to a stronger version of the Turing principle: The Turing principle (for physical computers simulating each other) It is possible to build a universal computer: a machine that can be programmed to perform any computation that any other physical object can perform. It follows that if a universal image generator were controlled by a universal computer, the resulting machine would be a universal virtual-reality generator. In other words, the following principle also holds: The Turing principle (for virtual-reality generators rendering each other) It is possible to build a virtual-reality generator whose repertoire includes that of every other physically possible virtual-reality generator. Now, any environment can be rendered by a virtual-reality generator of some sort (for instance, one could always regard a copy of that very environment as a virtual-reality generator with perhaps a very small repertoire). So it also follows from this version of the Turing principle that any physically possible environment can be rendered by the universal virtual-reality generator. Hence to express the very strong self-similarity that exists in the structure of reality embracing not only computations but all physical processes, the Turing principle can be stated in this all-embracing form: The Turing principle It is possible to build a virtual-reality generator whose repertoire includes every physically possible environment. This is the strongest form of the Turing principle. It not only tells us that various parts of reality can resemble one another. It tells us that a single physical object, buildable once and for all (apart from maintenance and a supply of additional memory when needed), can perform with unlimited accuracy the task of describing or mimicking any other part of the multiverse. The set of all behaviours and responses of that one object exactly mirrors the set of all behaviours and responses of all other physically possible objects and processes. This is just the sort of self-similarity that is necessary if, according to the hope I expressed in Chapter 1, the fabric of reality is to be truly unified and comprehensible. If the laws of physics as they apply to any physical object or process are to be comprehensible, they must be capable of being embodied in another physical object — the knower. It is also necessary that processes capable of creating such knowledge be physically possible. Such processes are called science. Science depends on experimental testing, which means physically rendering a law’s predictions and comparing it with (a rendering of) reality. It also depends on explanation, and that requires the abstract laws themselves, not merely their predictive content, to be capable of being rendered in virtual reality. This is a tall order, but reality does meet it. That is to say, the laws of physics meet it. The laws of physics, by conforming to the Turing principle, make it physically possible for those same laws to become known to physical objects. Thus, the laws of physics may be said to mandate their own comprehensibility. Since building a universal virtual-reality generator is physically possible, it must actually be built in some universes. A caveat is necessary here. As I explained in Chapter 3, we can normally define physically possible process as one that actually occurs somewhere in the multiverse. But strictly speaking, a universal virtual-reality generator is a limiting case that requires arbitrarily large resources to operate. So what we really mean by saying that it is ‘physically possible’ is that virtual-reality generators with repertoires arbitrarily close to the set of all physically possible environments exist in the multiverse. Similarly, since the laws of physics are capable of being rendered, they are rendered somewhere. Thus it follows from the Turing principle (in the strong form for which I have argued) that the laws of physics do not merely mandate their own comprehensibility in some abstract sense — comprehensibility by abstract scientists, as it were. They imply the physical existence, somewhere in the multiverse, of entities that understand them arbitrarily well. I shall discuss this implication further in later chapters. Now I return to the question I posed in the previous chapter, namely whether, if we had only a virtual-reality rendering based on the wrong laws of physics to learn from, we should expect to learn the wrong laws. The first thing to stress is that we do have only virtual reality based on the wrong laws to learn from! As I have said, all our external experiences are of virtual reality, generated by our own brains. And since our concepts and theories (whether inborn or learned) are never perfect, all our renderings are indeed inaccurate. That is to say, they give us the experience of an environment that is significantly different from the environment that we are really in. Mirages and other optical illusions are examples of this. Another is that we experience the Earth to be at rest beneath our feet, despite its rapid and complex motion in reality. Another is that we experience a single universe, and a single instance of our own conscious selves at a time, while in reality there are many. But these inaccurate and misleading experiences provide no argument against scientific reasoning. On the contrary, such deficiencies are its very starting-point. We are embarked upon solving problems about physical reality. If it turns out that all this time we have merely been studying the programming of a cosmic planetarium, then that would merely mean that we have been studying a smaller portion of reality than we thought. So what? Such things have happened many times in the history of science, as our horizons have expanded beyond the Earth to include the solar system, our Galaxy, other galaxies, clusters of galaxies and so on, and, of course, parallel universes. Another such broadening may happen tomorrow; indeed, it may happen according to any one of an infinity of possible theories — or it may never happen. Logically, we must concede to solipsism and related doctrines that the reality we are learning about might be an unrepresentative portion of a larger, inaccessible or incomprehensible structure. But the general refutation that I have given of such doctrines shows us that it is irrational to build upon that possibility. Following Occam, we shall entertain such theories when, and only when, they provide better explanations than simpler rival theories. However, there is a question we can still ask. Suppose that someone were imprisoned in a small, unrepresentative portion of our own reality — for instance, inside a universal virtual-reality generator that was programmed with the wrong laws of physics. What could such prisoners learn about our external reality? At first sight, it seems impossible that they could discover anything at all about it. It may deem that the most they could discover would be the laws of operation, i.e. the program, of the computer that operated their prison. But that is not so! Again, we must bear in mind that if the prisoners are scientists, they will be seeking explanations as well as predictions. In other words, they will not be content with merely knowing the program that operates their prison: they will want to explain the origin and attributes of the various entities, including themselves, that they observe in the reality they inhabit. But in most virtual-reality environments no such explanation exists, for the rendered objects do not originate there but have been designed in the external reality. Suppose that you are playing a virtual-reality video game. For the sake of simplicity, suppose that the game is essentially chess (a first- person-perspective version perhaps, in which you adopt the persona of the king). You will use the normal methods of science to discover this environment’s ‘laws of physics’ and their emergent consequences. You will learn that checkmate and stalemate are ‘physically’ possible events (i.e. possible under your best understanding of how the environment works), but that a position with nine white pawns is not ‘physically’ possible. Once you had understood the laws sufficiently well, you would notice that the chessboard is too simple an object to have, for instance, thoughts, and consequently that your own thought-processes can not be governed by the laws of chess alone. Similarly, you could tell that during any number of games of chess the pieces can never evolve into self-reproducing configurations. And if life cannot evolve on the chessboard, far less can intelligence evolve. Therefore you would also infer that your own thought- processes could not have originated in the universe in which you found yourself. So even if you had lived within the rendered environment all your life, and did not have your own memories of the outside world to account for as well, your knowledge would not be confined to that environment. You would know that, even though the universe seemed to have a certain layout and obey certain laws, there must be a wider universe outside it, obeying different laws of physics. And you could even guess some of the ways in which these wider laws would have to differ from the chessboard laws. Arthur C. Clarke once remarked that ‘any sufficiently advanced technology is indistinguishable from magic’. This is true, but slightly misleading. It is stated from the point of view of a pre-scientific thinker, which is the wrong way round. The fact is that to anyone who understands what virtual reality is, even genuine magic would be indistinguishable from technology, for there is no room for magic in a comprehensible reality. Anything that seems incomprehensible is regarded by science merely as evidence that there is something we have not yet understood, be it a conjuring trick, advanced technology or a new law of physics. Reasoning from the premise of one’s own existence is called ‘anthropic’ reasoning. Although it has some applicability in cosmology, it usually has to be supplemented by substantive assumptions about the nature of ‘oneself’ before it yields definite conclusions. But anthropic reasoning is not the only way in which the inmates of our hypothetical virtual-reality prison could gain knowledge of an outside world. Any of their evolving explanations of their narrow world could, at the drop of a hat, reach into an outside reality. For instance, the very rules of chess contain what a thoughtful player may realize is ‘fossil evidence’ of those rules having had an evolutionary history: there are ‘exceptional’ moves such as castling and capturing en passant which increase the complexity of the rules but improve the game. In explaining that complexity, one justifiably concludes that the rules of chess were not always as they are now. In the Popperian scheme of things, explanations always lead to new problems which in turn require further explanations. If the prisoners fail, after a while, to improve upon their existing explanations, they may of course give up, perhaps falsely concluding that there are no explanations available. But if they do not give up they will be thinking about those aspects of their environment that seem inadequately explained. Thus if the high-technology jailers wanted to be confident that their rendered environment would forever fool their prisoners into thinking that there is no outside world, they would have their work cut out for them. The longer they wanted the illusion to last, the more ingenious the program would have to be. It is not enough that the inmates be prevented from observing the outside. The rendered environment would also have to be such that no explanations of anything inside would ever require one to postulate an outside. The environment, in other words, would have to be self-contained as regards explanations. But I doubt that any part of reality, short of the whole thing, has that property. TERMINOLOGY Universal virtual-reality generator One whose repertoire contains every physically possible environment. Cantgotu environments Logically possible environments which cannot be rendered by any physically possible virtual-reality generator. diagonal argument A form of proof in which one imagines listing a set of entities, and then uses the list to construct a related entity that cannot be on the list. Turing machine One of the first abstract models of computation. universal Turing machine A Turing machine with the combined repertoire of all other Turing machines. Turing principle (in its strongest form) It is physically possible to build a universal virtual-reality generator. On the assumptions I have been making, this implies that there is no upper bound on the universality of virtual-reality generators that will actually be built somewhere in the multiverse. SUMMARY The diagonal argument shows that the overwhelming majority of logically possible environments cannot be rendered in virtual reality. I have called them Cantgotu environments. There is nevertheless a comprehensive self- similarity in physical reality that is expressed in the Turing principle: it is possible to build a virtual-reality generator whose repertoire includes every physically possible environment. So a single, buildable physical object can mimic all the behaviours and responses of any other physically possible object or process. This is what makes reality comprehensible. It also makes possible the evolution of living organisms. However, before I discuss the theory of evolution, the fourth strand of explanation of the fabric of reality, I must make a brief excursion into epistemology. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling