The Implementation of Machine Learning and Deep Learning Algorithms for Crop Yield Prediction in Agriculture


Download 0.67 Mb.
Pdf ko'rish
bet3/7
Sana30.08.2023
Hajmi0.67 Mb.
#1671574
1   2   3   4   5   6   7
Bog'liq
AGRI ARTIC 2nd Rahimov

1. Related works 
In recent years, there has been significant 
research interest and activity focused on the topic 
of crop yield prediction. Numerous studies have 
been conducted in this area, exploring various 
techniques and methodologies for predicting crop 
yields with greater accuracy and precision. Koirala 
et al. (2019) reviewed the use of Deep Learning 
methods for fruit counting and estimating yield. 
They revealed the ability of Deep Learning 
methods to extract important features while 
recommending approaches such as CNN detectors, 
deep regression, and LSTM for estimating the fruit 
load [3]. Dharani et al. (2021) conducted a review 
on crop yield prediction using Deep Learning and 
found that hybrid networks and RNN-LSTM 
networks outperformed other networks. The 
superior performance of RNN and LSTM can be 
attributed to their storage and feedback loop 
capabilities, enabling them to make accurate 
predictions with time-series data on crop yield [4]. 
In their study on crop yield prediction using 
Machine Learning, van Klompenburg et al. (2020) 
found that neural networks, specifically CNN, 
LSTM, and DNN, were the most commonly used 
models. They also noted that the number of features 
used varied depending on the study and that in 
some cases, yield prediction relied on object 
counting and detection instead of tabular data [5]. 
Amit et al. proposed their model that predicts 
winter crop yield of wheat using DNN
convolutional neural network(CNN) and XGboost. 
Their proposed CNN model outperformed all other 
baseline models used for winter wheat yield 
prediction (7 to 14% lower RMSE, 3 to 15% lower 
MAE, and 4 to 50% higher correlation coefficient 
than the best performing baseline across test data) 
[2]. 


Bulletin of TUIT: Management and Communication Technologies
Nodir Rahimov, Dilmurod Khasanov 
2023.Vol-2(4) 
Table 1. Targets and methods of related works [6] . 

Download 0.67 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling