Tt -11 -20 grux talabasi ko’charova elinurning algoritimlarni loyihalash fanidan
Download 45.9 Kb.
|
LABARATORIYA 3
- Bu sahifa navigatsiya:
- Kerakli jihozlar
- Ta’rif.
- Dastur kodi (Lagranj interpolyatsion ko’phadi)
- Mustaqil ish topshiriqlari
MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI QARSHI FILIALI TT -11 -20 GRUX TALABASI KO’CHAROVA ELINURNING ALGORITIMLARNI LOYIHALASH FANIDAN Laboratoriya mashg’uloti Mavzu: Jadval funksiyani Fure qatoriga yoyish. Fure koeffitsiyentlarini hisoblash. Qator hadlari sonini tanlash Ishning maqsadi: Funksiyalarni furye qatoriga yoyish, Furye koeffitsentlarini aniqlash Kerakli jihozlar: Doska, proyektor, kompyuter, C++ dasturlash muhiti Furye qatori . Faraz qilaylik, funksiya da berilgan bo‘lsin. Ma’lumki, shunday son topilsaki, da tenglik bajarilsa, davriy funksiya, son esa uning davri deyiladi. Agar son funksiyaning davri bo‘lsa, u holda sonlar ham shu funksiyaning davri bo‘ladi. Agar va davriy funksiyalar bo‘lib, ularning davri bo‘lsa, funksiyalar ham davriy bo‘lib, ularning davri ga teng bo‘ladi. funksiyalar davrli funksiya bo‘lgan holda ushbu ( o‘zgarmas, ) funksiya ham davriy funksiya bo‘lib, uning davri bo‘ladi. Haqiqatan ham, bo‘ladi. Bu sodda davriy funksiya bo‘lib, u garmonika deb ataladi. Aytaylik, funksiya da uzluksiz bo‘lsin. Unda funksiyalar ham da uzluksiz bo‘lib, ular da integrallanuvchi bo‘ladi. Bu integrallarni quyidagicha belgilaymiz: (1) Bu sonlardan foydalanib, ushbu (2) qatorni ( uni trigonometrik qator deyiladi) hosil qilamiz. (2) qator funksional qator bo‘lib, uning har bir hadi garmonikadan iborat. Ta’rif. (2) funksional qator funksiyaning Furye qatori deyiladi. (1) munosabatlar bilan aniqlangan sonlar Furye koeffitsiyentlari deyiladi. 1-Misol. Quyidagi jadval ko’rinishda berilgan funksiyaning Fure qatoriga yoying
Lagranj interpolyatsion ko’phadi orqali berilgan jadval funksiyani ko’phad shaklga keltirib olamiz. Berilgan misolni yechishda hisoblashlarni quyidagi ko’phadga keltiramiz Demak, berilgan jadval funksiya ko’rinishda ekan. Endi uning Fure qatorini topamiz. juft funksiyaning Furye qatori topilsin. ◄ Avvalo berilgan funksiyaning Furye koeffitsiyentlarini topamiz: Demak, +2 funksiyaning Furye qatori bo‘ladi. ► Dastur kodi (Lagranj interpolyatsion ko’phadi) #include using namespace std; int main(){ float n, xx; float x[100], y[100]; cout<<"n ni kiriting "; cin>>n; cout< { cin>>x[i]>>y[i]; } cout<<"x agrument qiymatini kiriting "; cin>>xx; double S=0; for(int i=0; i<=n;i++) { double p=1; for(int j=0; j<=n; j++) if(i!=j) p*=(xx-x[j])/(x[i]-x[j]); p*=y[i]; S+=p; } cout< 2-misol. Berilgan jadval funksiya uchun ko’phad tuzing
F(x) = x*x-5x+6 Mustaqil ish topshiriqlari Quyidagi funksiyalarni Furye qatorlariga yoyish algoritmini va dasturini tuzing y=sinx y=x2+2x+3 y=e2x+2 y=2x+4 y=cosx y=x2+3x+3 y=ex+5 y=3x+4 y=tgx y=x3+2x+5 y=e2x+10 y=2x-6 y=sin 22x y=x4-5x+3 y=e2x+10 y=6x+8 y=cos 2x y=x2-5x+3 y=e2x y=2x Download 45.9 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling