U niversity


Download 0.69 Mb.
Pdf ko'rish
bet7/9
Sana12.12.2017
Hajmi0.69 Mb.
#22133
1   2   3   4   5   6   7   8   9

The objective of this course is to learn and understand basic notions of differentiation and 

integration of functions of several variables and methods of mathematical analysis based on 

them, as well as to become able to apply this knowledge to solving problems.

1. Sets of points in a plane and in space (3-4 weeks) 

   Distance, convergence of sequences of points, open sets, closed sets, properties of 

continuous functions. 

2. Differentiation of functions of several variables (4-5 weeks) 

   Partial differential coefficients, total differentiability, tangential plane, gradient vector, 

differentiation of composite functions, Jacobian matrix and determinant, implicit 

functions, inverse mapping, Taylor's formula, extreme value problems, extreme value 

problems with constraints. 

3. Integration of functions of several variables (4-5 weeks) 

      Multiple integrals, iterated integrals, calculation of area and volume, change of variables 

for multiple integrals, improper integrals. 

4. Final examination (1 week) 

5. Feedback (1 week)   The form of feedback will be announced during the lecture.

Final examination (60 points), reports (10 reports, 3 points each), participation in class (10 

points).


It is difficult to follow the lecture without regular study. Therefore, students are expected to 

devote an amount of time equivalent to the time of the lecture to solve report problems and 

to review the contents of previous lectures. 

There are no fixed office hours. If you wish to have a consultation, please feel free to 

contact the lecturer.

Students must attend the course “Calculus A” before taking “Calculus B”. Moreover, 

students are expected to have mastered the contents of the course “Linear Algebra A”. 

It is desirable to take the course “Linear Algebra B” in parallel.

Linear Algebra B 

Graduate School of Science 

CLLINS, Benoit Vincent Pierre 

Mathematics 

2

Fall


Fri/3

Mainly for 1st grade

Science 

N110001 


Yoshida South 

35

Linear algebra is one of the fundamental and important parts of mathematics. With Linear 



Algebra A and B, students are expected to understand not only the fundamental concepts of 

vector spaces and linear mappings, but also the concrete treatments of matrices and systems 

of linear equations. 

The objective of this course is to introduce linear algebra concepts such as vector spaces, 

linear mappings, matrices and systems of linear equations.     

In addition to learning linear algebra, students can learn how to discuss and present 

mathematical topics in English through this course. 

1. Abstract Vector spaces 

      Basis, dimension, linear mappings and matrices, change of bases, subspaces, direct sums, 

kernel and image 

2. Euclidean Spaces 

Inner product, orthogonal matrices, unitary matrices, orthonormal basis and orthogonal 

complements 

3. Eigenvalues and diagonalization of matrices 

   Eigenvalues and eigenvectors, eigenpolynominals and diagonalization of symmetric 

matrices by orthogonal matrices (diagonalization of Hermitian matrices by unitary 

matrices) 

The evaluation of the course will take into account the following criteria: 

 -homework (20%) 

 -midterm (20%) 

 -final exam (60%) 

To be announced. 

Students are welcome to ask questions during, at the beginning or at the end of the class. 

The instructor encourages students to arrange an appointment with him if they have 

questions. 

Students are expected to understand Calculus A and Linear Algebra A. 

Honors Mathematics A 

Graduate School of Science 

CLLINS, Benoit Vincent Pierre 

Mathematics

2

Fall


Wed/4

Mainly for 1st grade

Science

N145001


Yoshida South

28

This course provides opportunities to learn mathematics in depth for highly motivated 



students. It supplements Calculus A and Linear Algebra A, and treats more advanced related 

topics.


In addition to learning modern mathematics and proofs, students can learn how to discuss 

and present mathematical topics in English through this course.

One of the goals of this course is to help students to get used to rigorous proofs of 

mathematical statements and abstract mathematical notions. These two features are central to 

and represent the power of modern mathematics, because rigorously proven facts are true 

forever, and an abstract notion can be applicable to various different situations as far as they 

share one key property. If the number of students permits, the course will be interactive. In 

particular, an additional goal of this course is to give a chance to the students to discuss 

mathematics in English. Topics will be chosen according to the level of the students. Below 

is a tentative and non exhaustive list of themes that could be covered:   

  1. Rigorous treatment of real numbers. 

    Axioms. Dedekind cut. Completion. 

  2. Convergence of sequences and series. 

        Alternating sequences, power series, Abel summation method, subadditive sequences. 

  3. Convex functions. 

  4. Stirling formula. 

  5. Linear algebra over general fields. 

        Examples of linear spaces. Dual spaces and quotient spaces. 

6. Permutations and combinatorics.

The evaluation of the course will take into account the following criteria: 

 -homework (20%) 

 -midterm (20%) 

-final exam (60%)

To be announced.

Students are welcome to ask questions during or at the end of the class. The schedule of 

office hours will be announced later.

Calculus A and Linear Algebra A. Students are strongly encouraged to take Calculus B and 

Linear Algebra B in parallel to this course. 



45

Introduction to Molecular Biotechnology 

Graduate School of Medicine 

Shohab YOUSSEFIAN 

Biology


2

Fall


Wed/3 

Mainly for 1st and 2nd grade 

Science 

N465001 


Toshida South 

1

33



Molecular Biotechnology is an exciting, evolving and interdisciplinary area of science that 

is expected to impact not only on the way we live but human life itself. It is being used to 

produce chemicals, medicines and other products in recombinant bacterial, plant and 

animal cells; to create transgenic plants that synthesize novel products or are resistant to 

various stresses, and transgenic animals with increased productivity; and is even being 

applied to modify humans through gene therapy and regenerative medicine. 

To appreciate the tremendous potential of molecular biotechnology through a solid 

understanding of its basic principles, techniques and current applications, and thereby be 

able to address, from a fully informed point of view, the moral and bioethical issues that 

arise from the use of such breakthrough technologies. 

Main Topics:                                                                                                                                 

      1. Introduction; overview, concepts, development and future   

      2. Genome organization, DNA and genes 

      3. Gene expression and regulation   

      4. Principles and techniques of recombinant DNA technology     

      5. Molecular techniques for gene identification   

      6. Molecular techniques of gene analysis   

      7. Recombinant proteins; synthesis and analysis   

      8. Methods in microbial molecular biotechnology   

      9. Applications of microbial molecular biotechnology   

    10. Methods in plant molecular biotechnology   

  11. Applications of plant molecular biotechnology  

    12. Methods in animal, human and medical biotechnology     

    13. Applications of animal and human molecular genetics                                                       

    14. Social and ethical issues of molecular biotechnology   

  15. Final examination 

  16. Feedback 

Evaluation will be based on class attendance and active participation (20 %),    mid-course 

tests (30 %) and a final examination (50 %) 

Full lecture handouts will be provided one week before each lecture, and will also be 

uploaded on KULASIS. It is expected that students will have read through the handouts at 

least once before each lecture to familiarize themselves with the contents. During the lecture

active listening and participation (e.g. by asking questions) will ensure a greater 

understanding of the basic concepts. Finally, and most importantly, a private review of the 

handout immediately after the lecture will ensure a full and solid understanding of the 

lecture concepts.

The course is presented as a series of engaging and active lectures with demonstrations and 

video presentations.   

Questions and discussions during class are highly encouraged.   

I run an open door policy; questions and discussions will be happily addressed anytime, even 

outside the official office hour.

Principles of Genetics 

Graduate School of Medicine 

Shohab YOUSSEFIAN 

Biology

2

Fall



Wed/2 

Mainly for 1st and 2nd grade 

Science 

N466001 


Yoshida South 

1

33



Genetics is the science of heredity that seeks to explain variation between related 

organisms. All aspects of life are affected by the expression of genes. As our understanding 

of the genome increases, it is expected that the application of classical and molecular genetic 

information will become an indispensable tool in the development of microbial, plant, 

animal and medical studies. 

To acquire a basic understanding of the principles of classical and molecular genetics and 

their relevance and application to modern biological sciences 

Main Topics: 

  1. Development of modern genetics 

    2. Cells and cell division 

  3. Mendelian inheritance 

    4. Extensions of Mendelian genetics   

    5. Chromosomes and chromosome aberrations 

    6. Genomes, DNA structure and replication 

    7. Gene expression and regulation 

    8. DNA mutations and repair 

    9. Techniques in molecular genetics and genomics 

  10. Cancer genetics 

  11. Developmental genetics 

  12. Behavioral, population and evolutionary genetics 

  13. Special topics in modern genetics 

  14. Applications of molecular genetics in microbiology, agriculture and medicine   

  15. Final Exam 

 16. Feedback 

Evaluation will be based on class attendance and active participation (20 %),    mid-course 

tests (30 %) and a final examination (50 %) 

Full lecture handouts will be provided one week before each lecture, and will also be 

uploaded on KULASIS. It is expected that students will have read through the handouts at 

least once before each lecture to familiarize themselves with the contents. During the lecture, 

active listening and participation (e.g. by asking questions) will ensure a greater 

understanding of the basic concepts. Finally, and most importantly, a private review of the 

handout immediately after the lecture will ensure a full and solid understanding of the 

lecture concepts. 

The course is presented as a series of engaging and active lectures with demonstrations and 

video presentations.   

Questions and discussions during class are highly encouraged.   

I run an open door policy; questions and discussions will be happily addressed anytime, even 

outside the official office hour.



46

Introduction to Behavioral Neuroscience B 

Graduate School of Medicine 

ALTMANN Christian 

Biology


2

Fall


Tue/2 

All grades 

All fields 

N480001 


Yoshida South 

36

Behavioral Neuroscience investigates the neural basis of behavior. Part B of this course will 



provide an introduction to higher brain functions, such as motivation, learning, memory, 

communication and language. The course will employ an integrative approach by discussing 

both research results obtained with brain imaging in humans and experiments in animal 

models. 


- To understand how our brain generates complex behavior. 

  - To understand how we can apply basic research in behavioral neuroscience to our 

 everyday life. 

  - To be able to critically evaluate research findings in behavioral neuroscience reported in 

  the public and scientific media. 

1) Introduction to higher brain functions 

  2) Motivation 

  3) Learning 

    4) Memory 

    5) Spatial memory and navigation 

  6) Executive functions and planning 

 7) Emotions 

 8) Reproductive behavior 

  9) Communication and language 

  10) Human language and language disorders 

  11) Social interaction 

  12) Evolution and development of behavior 

  13) Neurological and psychiatric disorders 

  14) Behavioral treatment strategies 

  15) Final examination 

 16) Feedback 

Evaluation will be based on class attendance and active participation (30 points), and a final 

examination (70 points). The final examination will test whether students have achieved the 

course goals. Students who are absent more than five times will not be credited. 

To achieve the course goals students should review the course materials plus optionally the 

according chapters in the recommended text books after each class. The time necessary for 

review should be in the range of 2-3 hours per class. 

No fixed office hours, but students are welcome to arrange appointments by email.

Introduction to Behavioral Neuroscience A is recommended, because it provides the 

fundamental knowledge for this course. 

Fundamental Physics B 

Graduate School of Engineering 

QURESHI, Ali Gul 

Physics 


2

Fall


Fri/4

Mainly for 1st grade

Science 

N209001 


Yoshida South 

3B

The objective of this course is to introduce fundamental concepts of physics relating with 



electricity 

and 


magnetism. 

 

       



. To understand the basic concepts of electricity and magnetism 

  . To be able to relate and appreciate the role of these concepts in many natural phenomenon   

 . To learn about the working of inventions (such as motors, generators, etc.) based on 

applications of these concepts. 

1)- Introduction to Electric fields, electric charge, Coulomb’s law, Electric Flux, Gauss’s 

law, Electric Potential, Equipotential lines and electric fields.(3 weeks) 

 2)- Capacitance and capacitors: Capacitors connected in parallel and series, Equivalent 

Capacitance (2 weeks) 

 3)- Electric Current, Ohm’s Law, Resistors in parallel and series, Equivalent resistance, 

Kirchhoff’s rules (3 weeks) 

  4)- Introduction to Magnetic Fields, Torque on a Current Loop, charged particle in uniform 

magnetic field, Magnetic flux (2 weeks) 

  5)- Electrocmagnetic Induction: Faraday’s Law, Lenz’s law, generators (2 weeks) 

  6)- Maxwell’s Equations and Electromagnetic Waves (2 weeks) 

Evaluation will be based on class quiz/homework (10%), midterm examination (40%) and 

final examination (50%). 

Students are advised to go through the class handouts and the readings suggested in the 

class for each topic. Homework is assigned to strengthen the learning of the topic covered in 

the class, therefore, it is advised to the students to do homework regularly and carefully.

Thermodynamics

Graduate School of Engineering 

KHAYYER, Abbas 

Physics

2

Fall



Fri/2

Mainly for 1st grade

Science

N210001


Yoshida South

3B

This course provides an introduction to the basic concepts and principles of 



thermodynamics and their applications in science and engineering.

The aim of this course is to achieve a comprehensive understanding of the fundamental 

concepts and principles of thermodynamics and their applications in science and 

engineering. 

As the main outcomes of this course students should 

  I. Gain a comprehensive understanding of thermodynamic principles and be able to apply 

them to engineering problem solving 

II. Be able to quantify energy transfer in thermodynamic systems

The following topics will be covered in this course:   

  (Each items will be covered by 2-3 weeks) 

  1) Introduction and areas of application of thermodynamics   

  2) State of equilibrium, thermodynamic property of substance (equation of state, heat 

  capacity), heat and work, state variable, Quasi-static processes   

  3) First Law of Thermodynamics, equivalence of heat and work, internal energy, adiabatic 

and isothermal processes, thermodynamic path line   

  4) Second Law of Thermodynamics, perpetual motion, Kelvin's principle, principle of least 

  action, endothermic processes, Carnot's theorem, heat engines   

  5) Entropy, irreversible processes, entropy and heat, entropy increase principle, entropy of 

ideal gas, complete thermodynamic functions   

  6) Thermodynamic property relation, free energy, differential expressions, energy equation, 

spring and heat, phase change, Maxwell and Clapeyron relations.

Evaluation is based on   

  1) Final Exam (50 points),   

  2) Classroom performance, assignments and quizzes (50 points) 

- Those who are absent more than four times will not be credited.

After each class students are encouraged to review the handouts and presentation files (that 

have been sent to their email address via a course mailing list) thoroughly, and work on the 

given assignments.

- No office hour specified. However, students are encouraged to ask their questions before or 

after each lecture or via email.



47

 Email: khayyer@particle.kuciv.kyoto-u.ac.jp 

  - Lectures are conducted by using both PowerPoint presentation and board 

Having taken the course "Fundamental Physics A" is preferable. 

Advanced Dynamics 

Graduate School of Engineering 

KIM, Sunmin

Physics

2

Fall



Tue/3

Mainly for 1st grade

Science

N211001


Yoshida Main

4

4



This course deals with the mechanics of rigid body based on Newton's mechanics. 

Descrioption of motion of rigid bodies and related applications will be explained in detail.

To understand various dynamic topics comprehensively based on many practical examples 

and problems.

The main topics in this lecture are as follows;   

  (Each items will be covered by 2-3 weeks) 

  1) System of particles   

     - Various coordinate systems 

     - Kinematics of a particle 

  - Kinetics of a particle 

 2) Rigid body  

     - Kinematics of a rigid body 

          - Force and acceleration of a rigid body 

     - Work and energy of a rigid body 

          - Impulse and Momentum of a rigid body   

  3) Rigid body motion in inertial frame (with examples) 

  4) Rigid body motion in non-inertial frame (with examples) 

  5) 3-dimensional dynamics (with examples)   

Evaluation is based on written test and performance at classroom.

Self-review is strongly recommended after the lectures. 

No office hour specified. Email: 

kim.sunmin.6x@kyoto-u.ac.jp

Having taken the course"Fundamental Physics A" is recommended.

Advanced Calculus B 

Graduate School of Engineering 

QURESHI, Ali Gul 

Mathematics 

2

Fall



Wed/5 

Mainly for 2nd grade

Science 

N105001 


Yoshida Main 

4

12



Based on the knowledge of Calculus A/ B and Liner Algebra A/B, this course explains 

ordinary differential equations. 

To learn the different types of differential equations and their solution methods. 

1. Elementary methods of solution 

    - Separation of variables, linear first order differential equations, total differential 

  equations(exact differential equations) and integrating factors (6 weeks) 

  2. Existence and uniqueness of the solution of initial value problems 

    - Space of continuous functions and it's properties(normed spaces, completeness), iterated 

  approximation, Cauche-Lipschitz's theorem and the connection of solution (4 weeks) 

  3. Linear differential equations 

    - Space of solutions of homogeneous equations, variation of parameters, exponential 

  function for matrices and Wronskian determinant. (4 weeks) 

Homework/quiz (10%), Mid-term Examination (40%), final examination(50%). 

Students are encouraged to do assigned homework related to the classes. 

Content of this course is independent from Advanced Calculus I of 1-st semester. 

Absence three times continuously without any special reasons are not allowed. 

To understand Calculus A/B and Linear Algebra A/B. 

Introduction to Engineering Geology 

Graduate School of Engineering 

FLORES GIANCARLO 

Geoscience

2

Fall



Thu/3

Mainly for 2nd grade

Science

N537001


Yoshida Main

4

4



This class provides a basic knowledge of the Geosphere (types of rocks, earthquakes, plate 

tectonics, etc.) in relation to global environmental problems and engineering geology.

By the end of the semester, students should be able to not only understand and have a basic 

knowledge of Geo-science but also think about its application regarding the use of natural 

earth resources and solving geoenvironmental problems. 

The main contents of this lecture are:   

  1. Introduction to Engineering Geology   

 2. Earth Matter 

 3. Geologic Time 

 4. Plate Tectonics 

  5. Water and the Geosphere 

 6. Earth Resources  

The contents of each topic will be delivered in two or three lectures each. At the end of the 

semester we will have one final feedback lecture. 

Grading will be based on weekly tests (20%, lowest score is eliminated), a midterm exam 

(30%), and a final exam (50%)


Download 0.69 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling