Urganch filyali mustaqil ishi
Sun’iy neyron tarmoqlari. Sodda neyron tarmoqlarini qurish. Neyron tarmoqlarining to‘gri va teskari tarqalish algoritmlari
Download 92.51 Kb.
|
DASTON (1)
Sun’iy neyron tarmoqlari. Sodda neyron tarmoqlarini qurish. Neyron tarmoqlarining to‘gri va teskari tarqalish algoritmlari.
Pandas, numpy va matplotlib kutubxonalarini import qildim. Malumotlarni tahlil qilish uchun pandas kutubxonasini import qilib pd ko’rinishida yozdim. Grafiklarni chizish uchun matplotlib kutubxonasidan pyplot modulini import qilib plt ko’rinishida yozdim. Datasetni hosil qilish uchun numpy kutubxonasini import qildim va np ko’rinishida yozdim. Dataset dataset = np.array([ [5, 1180,50, 2,1, 0], [6, 1490, 55,2,1, 0], [41, 1370, 60,2,1,0], [42, 2300,65, 2,1,0], [43, 2000,70, 2,1,0], [44, 1370,75, 2,1,0], [24, 2300,140, 4,2,1], [25, 2890,143, 4,2,1], [26, 2500,145, 4,3,1], [27, 2660,149, 4,3,1], [28, 2700,152, 4,3,1], [11, 1444,80, 2,1,0], [12, 1100,85, 3,1,0], [13, 1550,90, 3,1,0], [14, 1490,95, 3,1,0], [15, 1280,100, 3,1,0], [16, 1290,105,3,2,0], [17, 1880,110, 3,2,0], [45, 1990, 115,3,2,0], [46, 2050,120, 3,2,1], [47, 2150,125, 3,2,1], [21, 2220,130, 3,2,1], [22, 2100,135, 3,2,1], [34, 2380,137, 3,2,1], [29, 2500,120, 4,3,1], [30, 2900,156, 4,3,1], [31, 1990,157, 4,3,1], [32, 2600,159, 4,3,2], [33, 2700,160, 4,3,2], [19, 2890,150, 4,3,2], [35, 2690,175, 5,3,2], [36, 2400,180, 5,3,2], [37, 1940,185, 5,3,2], [38, 1870,189, 5,3,2], [39, 2100,200, 6,3,2], [40, 2330,195, 6,3,2], [6, 2790,196, 6,3,2], [7, 2600,200, 6,3,2], [9, 2280, 210,7,3,2], [10, 2790, 220,7,3,2] ]) X va Y o’zgaruvchilarning qiymatlarini quyidagicha tekshirildi array([[ 5, 1180, 50, 2, 1], [ 6, 1490, 55, 2, 1], [ 41, 1370, 60, 2, 1], [ 42, 2300, 65, 2, 1], [ 43, 2000, 70, 2, 1], [ 44, 1370, 75, 2, 1], [ 24, 2300, 140, 4, 2], [ 25, 2890, 143, 4, 2], [ 26, 2500, 145, 4, 3], [ 27, 2660, 149, 4, 3], [ 28, 2700, 152, 4, 3], [ 11, 1444, 80, 2, 1], [ 12, 1100, 85, 3, 1], [ 13, 1550, 90, 3, 1], [ 14, 1490, 95, 3, 1], [ 15, 1280, 100, 3, 1], [ 16, 1290, 105, 3, 2], [ 17, 1880, 110, 3, 2], [ 45, 1990, 115, 3, 2], [ 46, 2050, 120, 3, 2], [ 47, 2150, 125, 3, 2], [ 21, 2220, 130, 3, 2], [ 22, 2100, 135, 3, 2], [ 34, 2380, 137, 3, 2], [ 29, 2500, 120, 4, 3], [ 30, 2900, 156, 4, 3], [ 31, 1990, 157, 4, 3], [ 32, 2600, 159, 4, 3], [ 33, 2700, 160, 4, 3], [ 19, 2890, 150, 4, 3], [ 35, 2690, 175, 5, 3], [ 36, 2400, 180, 5, 3], [ 37, 1940, 185, 5, 3], [ 38, 1870, 189, 5, 3], [ 39, 2100, 200, 6, 3], [ 40, 2330, 195, 6, 3], [ 6, 2790, 196, 6, 3], [ 7, 2600, 200, 6, 3], [ 9, 2280, 210, 7, 3], [ 10, 2790, 220, 7, 3]]) Keras kutubxonasidan foydalangan holda masalaga mos neyron tarmoq arxitekturasini qurishni quyidagicha boshladim. To_categorial modulini import qildim va Y qiymatini o’zgartirib y ga o’zlashtirdim. Neyron tarmoqni o’qitish paramertlarini(o’qish qadami-lr, o’qitishlar soni-epochs) ni tanladim va quyidagi kod orqali history ga o’zlashtirib ekranga chiqardim. Download 92.51 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling