Ushbu Koshi masalasini, ya’ni x + x + X = e-t + cos (t) uchinchi tartibli oddiy differensial tenglamani x(0)=1, x(0)=0 va x(0)=0,4 boshlang‘ich shartlar uchun Mathcad paketi yordamida yeching. Yechish


Download 11.5 Kb.
Sana30.12.2022
Hajmi11.5 Kb.
#1072766
Bog'liq
Ushbu Koshi masalasini


Ushbu Koshi masalasini, ya’ni x + x + x = e-t + cos (t) uchinchi tartibli oddiy differensial tenglamani x(0)=1, x(0)=0 va x(0)=0,4 boshlang‘ich shartlar uchun Mathcad paketi yordamida yeching. Yechish. Oddiy differensial tenglamalar sistemasi. Mathcad dasturida oddiy differensial tenglamalar sistemasini yechish uchun Given blokiga tegishli odesolve funksiyasi mavjud bo‘lib, u quyidagicha yoziladi: y=odesolve(x,t,b) bunda x – integrallanuvchi tenglamalar; t – integrallash o‘zgaruvchilari; b – integrallash intervalining oxirgi nuqtasi; boshlang‘ich shartlar quyidgicha ifodalanadi: x(a)=x0 va y (a)=y0 Oddiy differensial tenglamalar sistemasining yechimi [a,b] kesmada aniqlangan y funksiyalar ko‘rinishida tiklanadi. 27 3-misol. Ushbu sin( ( ) ( )) cos( ( ) ( )), x t ty t dt dy x t y t dt dx    oddiy differensial tenglamalar sistemasini x(0)=0 va y(0)=0 boshl
Download 11.5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling