Условия равновесий системы твердых тел
Download 101.11 Kb.
|
УСЛОВИЯ РАВНОВЕСИЙ СИСТЕМЫ ТВЕРДЫХ ТЕЛ
УСЛОВИЯ РАВНОВЕСИЙ СИСТЕМЫ ТВЕРДЫХ ТЕЛ План: Введение Условия равновесия, виды равновесия Рычаг Введение
Если тело покоится, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются. Величина деформации зависит от различных условий: материала тела, его формы, приложенных к нему сил. Деформации могут быть большими, и тогда их легко заметить, например растяжение резинового шнура, изгиб тонкой металлической линейки и т.д. Малые деформации можно обнаружить при помощи специальных приборов.
1. Условия равновесия, виды равновесия Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс. Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю. На рис 2,1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке. Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил. Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения. Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы. Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. .2,2). Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю: В Международной системе единиц (СИ) моменты сил измеряются в ньютон-метрах (Н∙м). В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов. Оба эти условия не являются достаточными для покоя. Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 2.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают устойчивые и неустойчивые состояния равновесия. Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние. При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в безразличном состоянии равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис.2.4). Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 2.5). Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 2.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м. Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро. равновесие устойчивый рычаг 2. Рычаг Рычаг — простейшее механическое устройство, представляющее собой твёрдое тело (перекладину), вращающееся вокруг точки опоры. Стороны перекладины по бокам от точки опоры называются плечами рычага. Рычаг используется для получения большего усилия на коротком плече с помощью меньшего усилия на длинном плече (или для получения большего перемещения на длинном плече с помощью меньшего перемещения на коротком плече). Сделав плечо рычага достаточно длинным, теоретически, можно развить любое усилие. Частными случаями рычага являются также два других простейших механизма: ворот и блок. Человек стал использовать рычаг ещё в доисторические времена, интуитивно понимая его принцип. Такие инструменты, как мотыга или весло, применялись, чтобы уменьшить силу, которую необходимо было прикладывать человеку. В пятом тысячелетии до нашей эры в Месопотамии применялись весы, использовавшие принцип рычага для достижения равновесия. Позже, в Греции, был изобретён безмен, позволивший изменять плечо приложения силы, что сделало использование весов более удобным. Около 1500 года до н. э. в Египте и Индии появляется шадуф, прародитель современных кранов, устройство для поднимания сосудов с водой. Гравюра из «Журнала механики», изданного в Лондоне в 1842 году, изображающая Архимеда, переворачивающего Землю с помощью рычага. Неизвестно, пытались ли мыслители тех времён объяснить принцип работы рычага. Первое письменное объяснение дал в III веке до н. э. Архимед, связав понятия силы, груза и плеча. Закон равновесия, сформулированный им, используется до сих пор и звучит как: «Усилие, умноженное на плечо приложения силы, равно нагрузке, умноженной на плечо приложения нагрузки, где плечо приложения силы — это расстояние от точки приложения силы до опоры, а плечо приложения нагрузки — это расстояние от точки приложения нагрузки до опоры». По легенде, осознав значение своего открытия, Архимед воскликнул: «Дайте мне точку опоры, и я переверну Землю!».[3] В 1773 году Джеймс Уатт предложил идею составного рычага, состоящего из двух или нескольких связанных друг с другом рычагов, который можно было использовать для ещё большего увеличения усилия. Пример составного рычага, используемого в повседневной жизни, можно найти в щипчиках для ногтей. Принцип действия Принцип работы рычага является прямым следствием закона сохранения энергии. Чтобы переместить рычаг на расстояние сила, действующая со стороны груза, должна совершить работу равную. Если посмотреть с другой стороны, сила, приложенная с другой стороны, должна совершать работу, где — это перемещение конца рычага, к которому приложена сила. Чтобы выполнялся закон сохранения энергии для замкнутой системы, работа действующей и противодействующей сил должны быть равны, то есть: По определению подобия треугольников, отношение перемещений двух концов рычага будет равно отношению его плеч, следовательно Учитывая, что произведение силы и расстояния является моментом силы, можно сформулировать принцип равновесия для рычага. Рычаг находится в равновесии, если сумма моментов сил (с учётом знака), приложенных к нему, равна нулю. Для рычагов, как и для других механизмов, вводят характеристику, показывающую механический эффект, который можно получить за счёт рычага. Такой характеристикой является передаточное отношение, оно показывает, как соотносятся нагрузка и приложенная сила: Составной рычаг Составной рычаг представляет собой систему из двух и более простых рычагов, соединённых таким образом, что выходное усилие одного рычага является входным для следующего. Например, для системы из двух последовательно связанных рычагов, если на входное плечо первого рычага приложена сила , на другом конце этого рычага выходное усилие окажется , и связаны они будут с помощью передаточного отношения: При этом на входное плечо второго рычага будет воздействовать такое же усилие, а выходным усилием второго рычага и всей системы будет , передаточное отношение второй ступени будет равно При этом механический эффект всей системы, то есть всего составного рычага, будет вычисляться как отношение входного и выходного усилия для всей системы, то есть. Таким образом, передаточное отношение составного рычага, состоящего из двух простых будет равно произведению передаточных отношений входящих в него простых рычагов. Составной рычаг в общем случае, состоящий из n простых рычагов Такой же подход решения можно применять и для более сложной системы, состоящей, в общем случае из n рычагов. В этом случае в системе будет присутствовать 2n плеч. Передаточное отношение для такой системы будет вычисляться по формуле: Как видно из формулы для этого случая также верно, что передаточное отношение составного рычага равно произведению передаточных отношений входящих в него элементов. Типы рычагов Различают рычаги 1 рода, в которых точка опоры располагается между точками приложения сил, и рычаги 2 рода, в которых точки приложения сил располагаются по одну сторону от опоры. Среди рычагов 2 рода выделяют рычаги 3 рода, с точкой приложения "входящей" силы ближе к точке опоры, чем нагрузки, что даёт выигрыш в скорости и пути. Применение Рычаг - один из наиболее распространенных и простых типов механизмов в мире, присутствующий как в природе, так и в рукотворном мире, созданном человеком. Тело человека как рычаг К примеру, скелет и опорно-двигательная система человека или любого животного состоит из десятков и сотен рычагов. Взглянем на локтевой сустав. Лучевая и плечевая кости соединятся вместе хрящом, к ним так же присоединяются мышцы бицепса и трицепса. Вот мы и получаем простейший механизм рычага. Если вы держите в руке гантель весом в 3 кг, какое усилие при этом развивает ваша мышца? Место соединения кости и мышцы делит кость в соотношении 1 к 8, следовательно, мышца развивает усилие в 24 кг! Получается, мы сильнее самих себя. Но рычажная система нашего скелета не позволяет нам в полной мере использовать нашу силу. Наглядный пример более удачного применения преимуществ рычага в скелетно-мышечной системе организма обратные задние колени у многих животных (все виды кошек, лошади, и т.д.). Их кости длиннее наших, а особое устройство их задних ног позволяет им гораздо эффективнее использовать силу своих мышц. Да, несомненно, их мышцы гораздо сильнее чем у нас, но и вес их больше на порядок. Средне-статистическая лошадь весит около 450 кг, и при этом может легко прыгнуть на высоту около двух метров. Нам же с вами, чтобы выполнить такой прыжок, надо быть мастерами спорта по прыжкам в высоту, хотя мы весим в 8-9 раз меньше, чем лошадь. Раз уж мы вспомнили о прыжках в высоту, рассмотрим варианты применения рычага, которые придуман человеком. Прыжки в высоту с шестом очень наглядный пример. При помощи рычага длинной около трех метров (длинна шеста для прыжков в высоту около пяти метров, следовательно, длинное плечо рычага, начинающееся в месте перегиба шеста в момент прыжка, составляет около трех метров) и правильного приложения усилия, спортсмен взлетает на головокружительную высоту до шести метров. Рычаг в быту Рычаги так же распространены и в быту. Вам было бы гораздо сложнее открыть туго завинченный водопроводный кран, если бы у него не было ручки в 3-5 см, которая представляет собой маленький, но очень эффективный рычаг. То же самое относится к гаечному ключу, которым вы откручиваете или закручиваете болт или гайку. Чем длиннее ключ, тем легче вам будет открутить эту гайку, или наоборот, тем туже вы сможете её затянуть. При работе с особо крупными и тяжелыми болтами и гайками, например при ремонте различных механизмов, автомобилей, станков, используют гаечные ключи с рукояткой до метра. Другой яркий пример рычага в повседневной жизни самая обычная дверь. Попробуйте открыть дверь, толкая её возле крепления петель. Дверь будет поддаваться очень тяжело. Но чем дальше от дверных петель будет располагаться точка приложения усилия, тем легче вам будет открыть дверь. Рычаги в технике Естественно, рычаги так же повсеместно распространены и в технике. Самый очевидный пример рычаг переключения коробки передач в автомобиле. Короткое плечо рычага та его часть, что вы видите в салоне. Длинное плечо рычага скрыто под днищем автомобиля, и длиннее короткого примерно в два раза. Когда вы переставляете рычаг из одного положения в другое, длинное плечо в коробке передач переключает соответствующие механизмы. Здесь так же очень наглядно можно увидеть, как длина плеча рычага, диапазон его хода и сила, необходимая для его сдвига, соотносятся друг с другом. Например, в спортивных автомобилях, для более быстрого переключения передач, рычаг обычно устанавливают короткий, и диапазон его хода так же делают коротким. Однако, в этом случае водителю необходимо прилагать больше усилий, чтобы переключить передачу. Напротив, в большегрузных автомобилях, где механизмы сами по себе тяжелее, рычаг делают длиннее, и диапазон его хода так же длиннее, чем в легковом автомобиле. Таким образом, мы можем убедиться в том, что механизм рычага очень широко распространен как в природе, так и в нашем повседневном быту, и в различных механизмах. Список использованной литературы 1. Савельев И.В. Курс общей физики: Учеб пособие. В 3 -х т. Т.1. Механика. Молекулярная физика. М., 1986. 2. Сивухин Д.В. Термодинамика и молекулярная физика: Учеб. пособие для вузов. - М., 1990. Download 101.11 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling