В е с т н и к алматинского университета
Вестник Алматинского университета энергетики и связи № 3 (58) 2022
Download 280.54 Kb. Pdf ko'rish
|
2-
Вестник Алматинского университета энергетики и связи № 3 (58) 2022
29 [13] Cheng Z. et al. Improved autoencoder for unsupervised anomaly detection //International Journal of Intelligent Systems. – 2021. – Т. 36. – №. 12. – С. 7103-7125. [14] Kawachi Y., Koizumi Y., Harada N. Complementary set variational autoencoder for supervised anomaly detection //2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2018. – С. 2366-2370. [15] Munirathinam S. Drift Detection Analytics for IoT Sensors //Procedia Computer Science. – 2021. – Т. 180. – С. 903-912. [16] Zhang X., Fan P., Zhu Z. A new anomaly detection method based on hierarchical HMM //Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies. – IEEE, 2003. – С. 249-252. [17] Цымблер М. Л. и др. Очистка сенсорных данных в интеллектуальных системах управления отоплением зданий //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика. – 2021. – Т. 10. – №. 3. – С. 16-36. [18] Munir M. et al. Pattern-based contextual anomaly detection in HVAC systems //2017 IEEE International Conference on Data Mining Workshops (ICDMW). – IEEE, 2017. – С. 1066-1073. [19] Wang K., Wang Y., Yin B. A density-based anomaly detection method for mapreduce //2012 IEEE 11th International Symposium on Network Computing and Applications. – IEEE, 2012. – С. 159-162. [20] Li M., Li P., Xu H. Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction //IEEE Access. – 2020. – Т. 8. – С. 35446-35454. [21] Vafaei Sadr A., Bassett B. A., Kunz M. A Flexible Framework for Anomaly Detection via Dimensionality Reduction //arXiv e-prints. – 2019. – С. arXiv: 1909.04060. [22] Zheng Z., Reddy A. L. N. Safeguarding building automation networks: THE-driven anomaly detector based on traffic analysis //2017 26th International Conference on Computer Communication and Networks (ICCCN). – IEEE, 2017. – С. 1-11. [23] Gunay H. B., Shi Z. Cluster analysis-based anomaly detection in building automation systems //Energy and Buildings. – 2020. – Т. 228. – С. 110445. [24] Perera D. W. U., Winkler D., Skeie N. O. Multi-floor building heating models in MATLAB and Modelica environments //Applied Energy. – 2016. – Т. 171. – С. 46-57. [25] Zhang F., Fleyeh H. Anomaly Detection of Heat Energy Usage in District Heating Substations Using LSTM based Variational Autoencoder Combined with Physical Model //2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). – IEEE, 2020. – С. 153-158. [26] Park S., Moon J., Hwang E. Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations //2020 International Conference on Data Mining Workshops (ICDMW). – IEEE, 2020. – С. 762-765. [27] Guzek M. et al. Advanced algorithms for operational optimization and predictive maintenance of large district heating systems //2019 IEEE 6th International Conference on Energy Smart Systems (ESS). – IEEE, 2019. – С. 165-170. Download 280.54 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling