When it comes to creating powerful and effec- tive hacking tools, Python is the language of
Download 6.5 Mb. Pdf ko'rish
|
Black Hat Python-1st Edition
UdP client
A Python UDP client is not much different than a TCP client; we need to make only two small changes to get it to send packets in UDP form. import socket target_host = "127.0.0.1" target_port = 80 # create a socket object u client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # send some data v client.sendto("AAABBBCCC",(target_host,target_port)) # receive some data w data, addr = client.recvfrom(4096) print data As you can see, we change the socket type to SOCK_DGRAM u when creat- ing the socket object. The next step is to simply call sendto() v, passing in the data and the server you want to send the data to. Because UDP is a con- nectionless protocol, there is no call to connect() beforehand. The last step is to call recvfrom() w to receive UDP data back. You will also notice that it returns both the data and the details of the remote host and port. Again, we’re not looking to be superior network programmers; we want to be quick, easy, and reliable enough to handle our day-to-day hacking tasks. Let’s move on to creating some simple servers. www.it-ebooks.info 12 Chapter 2 tcP server Creating TCP servers in Python is just as easy as creating a client. You might want to use your own TCP server when writing command shells or craft- ing a proxy (both of which we’ll do later). Let’s start by creating a standard multi-threaded TCP server. Crank out the code below: import socket import threading bind_ip = "0.0.0.0" bind_port = 9999 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) u server.bind((bind_ip,bind_port)) v server.listen(5) print "[*] Listening on %s:%d" % (bind_ip,bind_port) # this is our client-handling thread w def handle_client(client_socket): # print out what the client sends request = client_socket.recv(1024) print "[*] Received: %s" % request # send back a packet client_socket.send("ACK!") client_socket.close() while True: x client,addr = server.accept() print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1]) # spin up our client thread to handle incoming data client_handler = threading.Thread(target=handle_client,args=(client,)) y client_handler.start() To start off, we pass in the IP address and port we want the server to listen on u. Next we tell the server to start listening v with a maximum backlog of connections set to 5. We then put the server into its main loop, where it is waiting for an incoming connection. When a client connects x, we receive the client socket into the client variable, and the remote connec- tion details into the addr variable. We then create a new thread object that www.it-ebooks.info The Network: Basics 13 points to our handle_client function, and we pass it the client socket object as an argument. We then start the thread to handle the client connection y, and our main server loop is ready to handle another incoming connection. The handle_client w function performs the recv() and then sends a simple message back to the client. If you use the TCP client that we built earlier, you can send some test packets to the server and you should see output like the following: [*] Listening on 0.0.0.0:9999 [*] Accepted connection from: 127.0.0.1:62512 [*] Received: ABCDEF That’s it! Pretty simple, but this is a very useful piece of code which we will extend in the next couple of sections when we build a netcat replace- ment and a TCP proxy. Download 6.5 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling