Wind Turbine Blade Design


Download 1.32 Mb.
Pdf ko'rish
bet16/19
Sana04.02.2023
Hajmi1.32 Mb.
#1157563
1   ...   11   12   13   14   15   16   17   18   19
Bog'liq
2013-09-06WindTurbineBladeDesignReview

Figure 12.
Gravitational load modelled as a cantilever beam. 
L
r
)
(DL
w
Distributed load
mg (dr
Edgewise deflection 


Energies 20125 
3446
Figure 13.
Edgewise bending about yy. 
y
1
y
x
Spar cap region
y
y
6.7. Structural Blade Regions 
The modern blade can be divided into three main areas classified by aerodynamic and structural 
function (Figure 14):
The blade root. The transition between the circular mount and the first aerofoil profile—this 
section carries the highest loads. Its low relative wind velocity is due to the relatively small 
rotor radius. The low wind velocity leads to reduced aerodynamic lift leading to large chord 
lengths. Therefore the blade profile becomes excessively large at the rotor hub. The problem of 
low lift is compounded by the need to use excessively thick aerofoil sections to improve 
structural integrity at this load intensive region. Therefore the root region of the blade will 
typically consist of thick aerofoil profiles with low aerodynamic efficiency. 
The mid span. Aerodynamically significant—the lift to drag ratio will be maximised. Therefore 
utilising the thinnest possible aerofoil section that structural considerations will allow. 
The tip. Aerodynamically critical—the lift to drag ratio will be maximised. Therefore using 
slender aerofoils and specially designed tip geometries to reduce noise and losses. Such tip 
geometries are as yet unproven in the field [1], in any case they are still used by 
some manufacturers. 
Figure 14.
The three blade regions. 


Energies 20125 

Download 1.32 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling