Xarakteristik funksiya va uning xossalari Reja: X tasodifiy miqdorning


Natija: Agar va har bir qo`shiluvchi qolganlari yig`indisiga bog`liq bo`lmasa, 4


Download 65.41 Kb.
bet2/4
Sana31.01.2024
Hajmi65.41 Kb.
#1819027
1   2   3   4
Natija: Agar va har bir qo`shiluvchi qolganlari yig`indisiga bog`liq bo`lmasa,

40. xarakteristik funksiya da tekis uzluksiz.
Isboti:

Oldin berilgan uchun, A ni shunday tanlaymizki, so`ngra ni shunday tanlaymizki, bo`lsin, natijada

bo`ladi.
5o.
Bu yerda , ning kompleks qo`shmasi.
Bu xossaning isboti

tenglikdan kelib chiqadi.
Quyidagi Poya teoremasini isbotisiz keltiramiz.
6o . Poya teoremasi, ,( ) quyidagi shartlarni qanoatlantiruvchi funksiya bo`lsin:
a) 0, (0)=1, va t da (t)0.
b) funksiya uzluksiz, juft va botiq.
Bundan funksiya biror taqsimot funksiyaning xarakteristik funksiyasi bo`ladi.
1- teorema. Agar tasodifiy miqdor n-tartibli absolyut momentga ega bo`lsa, xarakteristik funksiya n marta diffyerenstiallanuvchi va k n uchun
(2)
va
(3)
bu yerda t0 da va barcha t lar uchun
Isboti: Xarakteristik funksiyasi k marta formal diffyerenstiallash quyidagiga olib keladi:
(4)

bo`lganligi uchun teorema shartidan (4) integralning mavjudligi va differensiallashning qonuniyligi kelib chiqadi.
(4) da deb olsak

kelib chiqadi.
(3) ni isbotlash uchun Teylor formulasidan foydalanamiz. Ma`lumki,

Shuning uchun bu yerda va - tasodifiy miqdorlar va .
(3) ga ega bo`lish uchun oxirgi tenglikning ikkala tomonidan matematik kutilma olish kyerak.

Endi ayrim muhim taqsimotlarning xarakteristik funksiyalarini qaraymiz.



Download 65.41 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling