Yechishning matritsa, Gauss va Gauss-Jordan usullari


Download 28.52 Kb.
bet1/2
Sana28.12.2022
Hajmi28.52 Kb.
#1024940
  1   2
Bog'liq
chiziqli-algebraik-tenglamalar-sistemasini-yechishning-matritsa-gauss-va-gauss-jordan-usullari



"Science and Education" Scientific Journal

August 2021 / Volume 2 Issue 8


Chiziqli algebraik tenglamalar sistemasini yechishning matritsa, Gauss va Gauss-Jordan usullari


Maxsud Tulqin o’g’li Usmonov maqsudu32@gmail.com


Toshkent axborot texnologiyalari universiteti Qarshi filiali


Annotatsiya: Chiziqli algebraaik tenglamalar tizimlarini echish usullarini ko’rib chiqiladi, unda tenglamalar soni noma’lum o’zgaruvchilar soniga teng va bitta echim mavjud. Birinchidan, biz ikkinchisiga e’tibor qaratamiz, ikkinchidan, biz tenglamalar tizimini echish usulini ko’rsatamiz, uchinchidan, Gauss usulini (noma’lum o’zgaruvchilarni izchil chiqarib tashlash usuli) tahlil qilamiz.
Kalit so’zlar: Chiziqli tenglamalar sistemasini yechishning Gauss usuli, chiziqli tenglamalar sistemasini yechishning Gauss - Jordan modifikatsiyasi, chiziqli tenglamalar sistemasining bazis yechimlari.


Matrix, Gauss and Gauss-Jordan methods for solving systems of linear algebraic equations


Mahsud Tulkin oglu Usmanov maksudu32@gmail.com


Karshi branch of Tashkent University of Information Technologies


Abstract: A method of solving systems of linear algebraic equations is considered, in which the number of equations is equal to the number of unknown variables and there is only one solution. First, we focus on the second, second, we show a way to solve a system of equations, and third, we analyze the Gaussian method (a method of sequential subtraction of unknown variables).
Keywords: Gaussian method of solving systems of linear equations, Gaussian- Jordan modification of systems of linear equations, basic solutions of systems of linear equations.


1. Chiziqli algebraik tenglamalar sistemasini yechishning matritsa usuli.
Ushbu n noma’lumli n ta chiziqli algebraik tenglamalar sistemasi berilgan boʻlsin:

a11x1 a12 x2  ....  a1nxn b1,
a x a x  ....  a x b ,
21 1 22 2 2n n 2


... ... ... ... ... ...

an1x1 an2 x2  ....  annxn bn .
(1)

tenglamalar sistemada quyidagi belgilashlarni kiritamiz:

a11 a12
a a
...
...
a1n   x1   b1
a   x   b


Download 28.52 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling