Zarrachalarning parchalanishi Relyativistik holat
Download 238.22 Kb. Pdf ko'rish
|
particle decay
Zarrachalarning parchalanishi Zarrachalarning parchalanishi Relyativistik holat
tohir.akramov@yahoo.com Mirzo Ulug’bek nomidagi O’zbekiston Milliy Universiteti Fizika fakulteti, "Nazariy Fizika" kefedrasi 13 oktabr 2020 y.
Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) Massasi m 1 va tezligi v bo‘lgan zarracha tinch turgan massasi m 2 bo‘lgan ikkinchi zarracha bilan to‘qnashish natijasida yutiladi. Hosil bo‘lgan zarrachaning massa- sini va tezligini toping. Masalaning qo‘yilishi :
Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) To‘qnashguncha bo‘lgan zarrachalarning 4-impulslarini yo- zamiz :
1 = ( E 1
, m 1
q 1 − v 2 /c 2 ), P 2 = ( E 2
, 0), bunda
E 1 = m 1
2 √
2 /c 2 = γ 1 m 1
2 va
2 = m 2
2 . Yechish : Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) To‘qnashgandan keyingi zarrachaning 4-impulsini yoza- miz :
q 1 − w 2 /c 2 ), bunda E = Mc 2 √ 1−w 2
2 = γ 2 Mc 2 . Yechish : Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) To‘qnashguncha va to‘qnashgandan keyingi 4-impulslarni teng- laymiz
1 + P 2 = P ⇒ ⇒ (γ 1
1
2 + m 2 c 2
1
1
2
2
2
⇒ (γ 1
1
2 + m 2 c 2 ) 1, γ 1
1
1
1
2 + m 2 c 2
= γ 2 Mc 2 1, w c 2 . Yechish : 4-impulsning saqlanish qonuni Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) 4-impulslar teng bo‘lishi uchun, ularning mos komponentalari teng bo‘lishi kerak : (γ 1
1
2 + m 2 c 2 ) 1, γ 1
1
1
1
2 + m 2 c 2
= γ 2 Mc 2 1, w c 2 ⇒ γ 1
1 + m 2 = γ 2
, γ 1
1
2
1
1
2
=
1
1
1
1 + m 2 =
1
1 + m 2 /γ 1 Yechish : 4-impulsning saqlanish qonuni Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) 4-impulslar teng bo‘lishi uchun, ularning mos komponentalari teng bo‘lishi kerak :
1
1 + m 2 = γ 2
, γ 1
1
2
1
1 + m 2 γ 2 = (γ 1 m 1 + m 2 ) q 1 − w 2
2 = . . . Yechish : 4-impulsning saqlanish qonuni Zarrachalarning parchalanishi 1-masala
Noelastik to‘qnashuv (13-masala, 62-bet) Javobga to‘g‘irlash uchun M 2 ni topamiz © :
2 = (γ 1 m 1 + m 2 ) 2 (1 − w 2
2 ) =
(γ 1
1 + m 2 ) 2 1 −
m 2 1 v 2
1 + m 2 /γ 1 ) 2 c 2 ! ⇒ (γ 1
1 + m 2 ) 2 · c 2 − γ 2 1 m 2 1 v 2 (γ 1 m 1 +m 2 ) 2 c 2 = m 2 1 + m 2 2 + 2m 1
2 q
2 /c 2 Yechish : 4-impulsning saqlanish qonuni Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) Tinch turgan m 0 massali zarracha m 1 va m 2 massali
zarrachalarga parchalanadi. Hosil bo‘lgan zarrachalar- ning kinetik energiyalarini toping. Masalaning qo‘yilishi :
Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) Parchalanguncha bo‘lgan "ona" zarrachaning 4-impulsini yozamiz :
0 = ( E 0
, 0) bunda
E 0 = m 0 c 2 . Yechish : Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) Parchalangandan so‘ng paydo bo‘lgan ikkita "qiz" zarra- chaning 4-impulslarini yozamiz :
1 = ( E 1
, p 1 ), P 2 = ( E 2
, p 2 ), bunda p 1 va p 2 – qiz zarrachalarning 3-impulslari. Yechish :
Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) Ona
zarracha parchalanguncha va parchalangandan keyingi 4-impulslari teng bo‘lishi kerak :
0
= E 1 + E 2 c , p 1 + p 2
Bundan kelib chiqadiki,
1 + E 2 = E 0
1 = −p 2 ⇒
1 + E 2 = m 0
2
1 | = |p 2 | Yechish : 4-impulsning saqlanish qonuni Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) m 1 massali qiz zarracha 4-impulsining o‘z-o‘ziga skalyar ko‘paytmasini topaylik : P i 1
1i = (
E 1
, p 1 )( E 1
, −p 1 ) = E 2 1
2 − p 2 1 = m 2 1
2 ⇒
2 1 = m 2 1
4 + p 2 1
2
2 2 = m 2 2 c 4 + p 2 2 |{z} p 2 1 c 2
Yechish : 4-impulsning skalyar ko‘paytmasi
Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) E 2 1 = m 2 1 c 4 + p 2 1
2
2 2 = m 2 2 c 4 + p 2 1
2
2 1 − E 2 2 = (E 1 − E 2 ) (E 1 + E 2 ) | {z }
0
2 = (m 2 1 − m 2 2 )c 4 Yechish : 4-impulsning skalyar ko‘paytmasi Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) E 1 − E 2 = (m 2 1 − m 2 2 ) m 0
2
1 + E 2 =
2 0
0 c 2
Yechish : ikki nom’alumli ikkita tenglama
Zarrachalarning parchalanishi 2-masala
Relyativistik zarrachaning parchalanishi (14-masala, 62-bet) E 1 = (m 2 0 + m 2 1 − m 2 2 ) 2m 0
2
E 2 = (m 2 0 + m 2 2 − m 2 1 ) 2m 0
2
Yechimlar :
Zarrachalarning parchalanishi C’est
tout! Download 238.22 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling