Abstract We give a proof of the Cauchy–Binet formula for the determinant of the product of two matrices that mostly avoids explicit matrix manipulations. × × × Let k


Download 15.74 Kb.
Sana31.01.2022
Hajmi15.74 Kb.
#556713
Bog'liq
CauchyBinet334
07-Turkiy Xalqlar Adabiyoti-Xozirgi Zamon Turk Adabiyoti - Dilimiz ve Edebiyatımız, 07-Turkiy Xalqlar Adabiyoti-Xozirgi Zamon Turk Adabiyoti - Dilimiz ve Edebiyatımız, FALSAFA 1-taqdimot, laboratoriya1, 2-shaxsiy uy topshiriq , 2-shaxsiy uy topshiriq , umumtalim maktablarida tengsizliklarni oqitishda grafik usullardan474, matritsaviy normalar va ularning tatbiqlari260, Tijorat banklarida personalni boshqarish xususiyatlari Qozieva MD uz d84d9, "Создать новый вопрос"">Moodle, 8-ma'ruza, bux slayd, 4WoCKaPQbCES9QyeCBhNAnmQk9aqqbvEhsKi6VmX, yomonlik xudodan qaytadi

The Cauchy–Binet formula

Andrew Putman




Abstract


We give a proof of the Cauchy–Binet formula for the determinant of the product of two matrices that mostly avoids explicit matrix manipulations.



× ×

×
Let k be a field. All matrices in this note have entries in k. Let A be an n m matrix and let B be an m n matrix. The product AB is thus an n n matrix. The Cauchy–Binet formula shows how to express the determinant of AB in terms of A and B. When n = m, it reduces to the familiar fact that det(AB) = det(A) det(B).


Stating it requires introducing some notation. Let [m] = {1, . . . , m}. For I ⊂ [m], let AI be the n × |I| submatrix of A consisting of the rows of A lying in I. Similarly, let IB be the |I| × n submatrix of B consisting of the columns of B lying in I.

× ×
Theorem 0.1 (Cauchy–Binet formula). Let A be an n m matrix and let B be an m n

Σ
matrix. Then

det(AB) =
I⊂[m]
|I|=n
det(AI) det(IB).




× →
Proof. For an r s matrix C, let φC : ks kr be the associated linear map. Thus φAB
equals the composition


−→ k
kn φB
−→ kn.


m φA
Letting {˙e1, . . . , ˙en} be the standard basis for kn, we thus have that
φA φB(˙e1 ∧ · · · ∧ ˙en) = det(AB)˙e1 ∧ · · · ∧ ˙en.
To express this in terms of A and B, we will have to first understand φB : ∧n kn → ∧nkm. Let {f˙1, . . . , f˙n} be the standard basis km. The vector space ∧nkm thus has a basis
{f˙i1 ∧ · · · ∧ f˙in | {i1 < · · · < in} ⊂ [m]}.

We claim that


Σ
φB(˙e1 ∧ · · · ∧ ˙en) =
I={i1<···<in}⊂[m]


det(IB)f˙i1 ∧ · · · ∧ f˙in . (0.1)


1

n
To see this, fix some I = {i1 < · · · < in} ⊂ [m]. Let VI = (f˙i , . . . , f˙i ) ⊂ km and let

→ ∈
πI : km VI be the projection whose kernel is generated by the f˙j with j / I. Identifying

m πI
VI with kn via its natural basis, the composition




−→ k
kn φB
−→ VI

equals the linear map associated to IB. We thus have
(πI φB)(˙e1 ∧ · · · ∧ ˙en) = det(IB)f˙i1 ∧ · · · ∧ f˙in .
The equation (0.1) follows.



{ · · · } ⊂
Fixing some I = i1 < < in [m] again, the next step is to observe that if we again identify VI with kn via its natural basis, the composition



−→

I
V ,km φA kn
equals the linear map associated to AI. It follows that
φA(f˙i1 ∧ · · · ∧ f˙in ) = det(AI)˙e1 ∧ · · · ∧ ˙en.
Combining this with (0.1), we see that


Σ
φA φB(˙e1 ∧ · · · ∧ ˙en) =

Σ
I={i1<···n}⊂[m]
=
I={i1<···<in}⊂[m]
det(IB)φA(f˙i1 ∧ · · · ∧ f˙in ) det(IB) det(AI)˙e1 ∧ · · · ∧ ˙en.

The theorem follows.
Andrew Putman Department of Mathematics University of Notre Dame 164 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu





Download 15.74 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2023
ma'muriyatiga murojaat qiling